936 research outputs found

    Nitrogen pair-induced temperature insensitivity of the band gap of GaNSb alloys

    Get PDF
    The temperature dependence of the band gap of GaN x Sb1−x films with x ≤ 1.3% has been studied in the 1.1–3.3 m (0.35–1.1 eV) range using infrared absorption spectroscopy between 4.2 and 300 K. As with other dilute nitride semiconductors, the temperature dependence of the band gap is reduced by alloying with nitrogen when compared to the host binary compound. However, for GaNSb, the smallest variation of the band gap with temperature is observed for samples with the lowest N content for which the band gap is almost totally insensitive to temperature changes. This contrasts with the more widely studied GaN x As1−x alloys in which the band gap variation with temperature decreases with increasing N content. The temperature-dependent absorption spectra are simulated within the so-called band anticrossing model of the interaction between the extended conduction band states of the GaSb and the localized states associated with the N atoms. The N next-nearest neighbor pair states are found to be responsible for the temperature insensitivity of the band gap of the GaNSb alloys as a result of their proximity to the conduction band edge giving them a more pronounced role than in GaNAs alloys

    Timing performance of a double layer diamond detector

    Get PDF
    In order to improve the time precision of detectors based on diamonds sensors we have built a detector with two scCVD layers connected in parallel to the same amplifier. This work describes the design and the first measurements of such a prototype performed on a particle beam at CERN. With this different configuration we have obtained an improvement larger than a factor of 1.6-1.7 for the timing precision of the measurement when compared to a one layer scCVD diamond detector.Peer reviewe

    Active Detectors for Plasma Soft X-Ray Detection at PALS

    Get PDF
    This paper summarizes the work carried out for an experimental study of low-energy nuclear excitation by laser-produced plasma at the PALS Prague laser facility. We describe the adaptation and shielding of single-quantum active radiation detectors developed at IEAP CTU Prague to facilitate their operation inside the laser interaction chamber in the vicinity of the plasma target. The goal of this effort is direct real-time single-quantum detection of plasma soft X-ray radiation with energy above a few keV and subsequent identification of the decay of the excited nuclear states via low-energy gamma rays in a highly radiative environment with strong electromagnetic interference

    Standardised cement augmentation of the PFNA using a perforated blade: A new technique and preliminary clinical results. A prospective multicentre trial

    Get PDF
    Producción CientíficaPertrochanteric fractures are a rising major health-care problem in the elderly and their operative stabilisation techniques are still under discussion. Furthermore, complications like cut-out are reported to be high and implant failure often is associated with poor bone quality. The PFNA1 with perforated blade offers a possibility for standardised cement augmentation using a polymethylmethacrylate (PMMA) cement which is injected through the perforated blade to enlarge the load-bearing surface and to diminish the stresses on the trabecular bone. The current prospective multicentre study was undertaken to evaluate the technical performance and the early clinical results of this new device. In nine European clinics, 59 patients (45 female, mean age 84.5 years) suffering from an osteoporotic pertrochanteric fracture (Arbeitsgemeinschaft fu¨ r Osteosynthesefragen, AO-31) were treated with the augmented PFNA1. Primary objectives were assessment of operative and postoperative complications, whereas activities of daily living, pain, mobility and radiologic parameters, such as cement distribution around the blade and the cortical thickness index, were secondary objectives. The mean follow-up time was 4 months where we observed callus healing in all cases. The surgical complication rate was 3.4% with no complication related to the cement augmentation. More than onehalf of the patients reached their prefracture mobility level within the study period. A mean volume of 4.2 ml of cement was injected. We did not find any cut-out, cut through, unexpected blade migration, implant loosening or implant breakage within the study period. Our findings lead us to conclude that the standardised cement augmentation using the perforated blade for pertrochanteric fracture fixation enhances the implant anchorage within the head–neck fragment and leads to good functional results

    The Diversity of Aphidlion-like Larvae over the Last 130 Million Years

    Get PDF
    Aphidlions are larvae of certain lacewings (Neuroptera), and more precisely larvae of the groups Chrysopidae, green lacewings, and Hemerobiidae, brown lacewings. The name ‘aphidlion’ originates from their ecological function as specialised predators of aphids. Accordingly, they also play an economic role as biological pest control. Aphidlions have, mostly, elongated spindle-shaped bodies, and similarly to most lacewing larvae they are equipped with a pair of venom-injecting stylets. Fossils interpreted as aphidlions are known to be preserved in amber from the Cretaceous (130 and 100 million years ago), the Eocene (about 35 million years ago) and the Miocene (about 15 million years ago) ages. In this study, new aphidlion-like larvae are reported from Cretaceous amber from Myanmar (about 100 million years old) and Eocene Baltic amber. The shapes of head and stylets were compared between the different time slices. With the newly described fossils and specimens from the literature, a total of 361 specimens could be included in the analysis: 70 specimens from the Cretaceous, 5 from the Eocene, 3 from the Miocene, 188 extant larvae of Chrysopidae, and 95 extant larvae of Hemerobiidae. The results indicate that the diversity of head shapes remains largely unchanged over time, yet there is a certain increase in the diversity of head shapes in the larvae of Hemerobiidae. In certain other groups of Neuroptera, a distinct decrease in the diversity of head shapes in larval stages was observed

    Collapse of an Instanton

    Full text link
    We construct a two parameter family of collapsing solutions to the 4+1 Yang-Mills equations and derive the dynamical law of the collapse. Our arguments indicate that this family of solutions is stable. The latter fact is also supported by numerical simulations.Comment: 17 pages, 1 figur

    Growth and properties of GaSbBi alloys

    Get PDF
    Molecular-beam epitaxy has been used to grow GaSb 1− x Bi x alloys with x up to 0.05. The Bi content, lattice expansion, and film thickness were determined by Rutherford backscattering and x-ray diffraction, which also indicate high crystallinity and that >98% of the Bi atoms are substitutional. The observed Bi-induced lattice dilation is consistent with density functional theory calculations. Optical absorption measurements and valence band anticrossing modeling indicate that the room temperature band gap varies from 720 meV for GaSb to 540 meV for GaSb 0.95Bi0.05, corresponding to a reduction of 36 meV/%Bi or 210 meV per 0.01 Å change in lattice constant
    corecore