39 research outputs found

    Comparison of vaccine-induced antibody neutralization against SARS-CoV-2 variants of concern following primary and booster doses of COVID-19 vaccines

    Get PDF
    The SARS-CoV-2 pandemic has, as of July 2022, infected more than 550 million people and caused over 6 million deaths across the world. COVID-19 vaccines were quickly developed to protect against severe disease, hospitalization and death. In the present study, we performed a direct comparative analysis of four COVID-19 vaccines: BNT162b2 (Pfizer/BioNTech), mRNA-1273 (Moderna), ChAdOx1 (Oxford/AstraZeneca) and Ad26.COV2.S (Johnson & Johnson/Janssen), following primary and booster vaccination. We focused on the vaccine-induced antibody-mediated immune response against multiple SARS-CoV-2 variants: wildtype, B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta) and B.1.1.529 (Omicron). The analysis included the quantification of total IgG levels against SARS-CoV-2 Spike, as well as the quantification of antibody neutralization titers. Furthermore, the study assessed the high-throughput ACE2 competition assay as a surrogate for the traditional pseudovirus neutralization assay. The results demonstrated marked differences in antibody-mediated immune responses. The lowest Spike-specific IgG levels and antibody neutralization titers were induced by one dose of the Ad26.COV2.S vaccine, intermediate levels by two doses of the BNT162b2 vaccine, and the highest levels by two doses of the mRNA-1273 vaccine or heterologous vaccination of one dose of the ChAdOx1 vaccine and a subsequent mRNA vaccine. The study also demonstrated that accumulation of SARS-CoV-2 Spike protein mutations was accompanied by a marked decline in antibody neutralization capacity, especially for B.1.1.529. Administration of a booster dose was shown to significantly increase Spike-specific IgG levels and antibody neutralization titers, erasing the differences between the vaccine-induced antibody-mediated immune response between the four vaccines. The findings of this study highlight the importance of booster vaccines and the potential inclusion of future heterologous vaccination strategies for broad protection against current and emerging SARS-CoV-2 variants

    Prehospital prognosis is difficult in patients with acute exacerbation of chronic obstructive pulmonary disease

    Get PDF
    Abstract Background Patients with acute exacerbation of chronic obstructive pulmonary disease often require prehospital emergency treatment. This enables patients who are less ill to be treated on-site and to avoid hospital admission, while severely ill patients can receive immediate ventilatory support in the form of intubation. The emergency physician faces difficult treatment decisions, however, and prognostic tools that could assist in determining which patients would benefit from intubation and ventilator support would be helpful. The aim of the current study was to identify prehospital clinical variables associated with mortality from acute exacerbation of chronic obstructive pulmonary disease. As part of the study, we estimated the 30-day mortality for patients with this prehospital diagnosis. Methods A retrospective study was performed using data collected by the mobile emergency care unit in Odense, Denmark, combined with data from the patients’ medical records. Patients with the tentative diagnosis of acute exacerbation of chronic obstructive pulmonary disease between 1st July 2011 and 31st December 2013 were included in the study. Results Based on data from 530 patients, we found no statistically significant associations between prehospital clinical variables and mortality, apart from a minor association between older age and higher mortality. The overall 30-day mortality was 10%, while that for patients admitted to the intensive care unit was 30%. Conclusion No specific prehospital prognostic factors for mortality were identified. Prognostic assessment and the decision to withhold treatment for acute exacerbation of chronic obstructive pulmonary disease seem inadvisable in the prehospital setting

    Noninvasive proteomic biomarkers for alcohol-related liver disease

    No full text
    Interogation of mass-spectrometry-based proteomics of liver and plasma from a cohort of patients with alcohol-related liver disease identifies noninvasive biomarkers associated with early stages of disease progression, including significant fibrosis, inflammation and steatosis. Alcohol-related liver disease (ALD) is a major cause of liver-related death worldwide, yet understanding of the three key pathological features of the disease-fibrosis, inflammation and steatosis-remains incomplete. Here, we present a paired liver-plasma proteomics approach to infer molecular pathophysiology and to explore the diagnostic and prognostic capability of plasma proteomics in 596 individuals (137 controls and 459 individuals with ALD), 360 of whom had biopsy-based histological assessment. We analyzed all plasma samples and 79 liver biopsies using a mass spectrometry (MS)-based proteomics workflow with short gradient times and an enhanced, data-independent acquisition scheme in only 3 weeks of measurement time. In plasma and liver biopsy tissues, metabolic functions were downregulated whereas fibrosis-associated signaling and immune responses were upregulated. Machine learning models identified proteomics biomarker panels that detected significant fibrosis (receiver operating characteristic-area under the curve (ROC-AUC), 0.92, accuracy, 0.82) and mild inflammation (ROC-AUC, 0.87, accuracy, 0.79) more accurately than existing clinical assays (DeLong's test, P < 0.05). These biomarker panels were found to be accurate in prediction of future liver-related events and all-cause mortality, with a Harrell's C-index of 0.90 and 0.79, respectively. An independent validation cohort reproduced the diagnostic model performance, laying the foundation for routine MS-based liver disease testing
    corecore