939 research outputs found
Linear wave dynamics explains observations attributed to dark-solitons in a polariton quantum fluid
We investigate the propagation and scattering of polaritons in a planar GaAs
microcavity in the linear regime under resonant excitation. The propagation of
the coherent polariton wave across an extended defect creates phase and
intensity patterns with identical qualitative features previously attributed to
dark and half-dark solitons of polaritons. We demonstrate that these features
are observed for negligible nonlinearity (i.e., polariton-polariton
interaction) and are, therefore, not sufficient to identify dark and half-dark
solitons. A linear model based on the Maxwell equations is shown to reproduce
the experimental observations.Comment: Article + Supplementary Information (tot. 18 pages
Binding energy and dephasing of biexcitons in In0.18Ga0.82As/GaAs single quantum wells
Biexciton binding energies and biexciton dephasing in In0.18Ga0.82As/GaAs single quantum wells have been measured by time-integrated and spectrally resolved four-wave mixing. The biexciton binding energy increases from 1.5 to 2.6 meV for well widths increasing from 1 to 4 nm. The ratio between exciton and biexciton binding energy changes from 0.23 to 0.3 with increasing inhomogeneous broadening, corresponding to increasing well width. From the temperature dependence of the exciton and biexciton four-wave mixing signal decay, we have deduced the acoustic-phonon scattering of the exciton-biexciton transition. It is found to be comparable to that of the exciton transition, indicating that the deformation potential interactions for the exciton and the exciton-biexciton transitions are comparable
Impact of phonons on dephasing of individual excitons in deterministic quantum dot microlenses
Optimized light-matter coupling in semiconductor nanostructures is a key to
understand their optical properties and can be enabled by advanced fabrication
techniques. Using in-situ electron beam lithography combined with a
low-temperature cathodoluminescence imaging, we deterministically fabricate
microlenses above selected InAs quantum dots (QDs) achieving their efficient
coupling to the external light field. This enables to perform four-wave mixing
micro-spectroscopy of single QD excitons, revealing the exciton population and
coherence dynamics. We infer the temperature dependence of the dephasing in
order to address the impact of phonons on the decoherence of confined excitons.
The loss of the coherence over the first picoseconds is associated with the
emission of a phonon wave packet, also governing the phonon background in
photoluminescence (PL) spectra. Using theory based on the independent boson
model, we consistently explain the initial coherence decay, the zero-phonon
line fraction, and the lineshape of the phonon-assisted PL using realistic
quantum dot geometries
Microcavity controlled coupling of excitonic qubits
Controlled non-local energy and coherence transfer enables light harvesting
in photosynthesis and non-local logical operations in quantum computing. The
most relevant mechanism of coherent coupling of distant qubits is coupling via
the electromagnetic field. Here, we demonstrate the controlled coherent
coupling of spatially separated excitonic qubits via the photon mode of a solid
state microresonator. This is revealed by two-dimensional spectroscopy of the
sample's coherent response, a sensitive and selective probe of the coherent
coupling. The experimental results are quantitatively described by a rigorous
theory of the cavity mediated coupling within a cluster of quantum dots
excitons. Having demonstrated this mechanism, it can be used in extended
coupling channels - sculptured, for instance, in photonic crystal cavities - to
enable a long-range, non-local wiring up of individual emitters in solids
Excitons in T-shaped quantum wires
We calculate energies, oscillator strengths for radiative recombination, and
two-particle wave functions for the ground state exciton and around 100 excited
states in a T-shaped quantum wire. We include the single-particle potential and
the Coulomb interaction between the electron and hole on an equal footing, and
perform exact diagonalisation of the two-particle problem within a finite basis
set. We calculate spectra for all of the experimentally studied cases of
T-shaped wires including symmetric and asymmetric GaAs/AlGaAs and
InGaAs/AlGaAs structures. We study in detail the
shape of the wave functions to gain insight into the nature of the various
states for selected symmetric and asymmetric wires in which laser emission has
been experimentally observed. We also calculate the binding energy of the
ground state exciton and the confinement energy of the 1D quantum-wire-exciton
state with respect to the 2D quantum-well exciton for a wide range of
structures, varying the well width and the Al molar fraction . We find that
the largest binding energy of any wire constructed to date is 16.5 meV. We also
notice that in asymmetric structures, the confinement energy is enhanced with
respect to the symmetric forms with comparable parameters but the binding
energy of the exciton is then lower than in the symmetric structures. For
GaAs/AlGaAs wires we obtain an upper limit for the binding energy
of around 25 meV in a 10 {\AA} wide GaAs/AlAs structure which suggests that
other materials must be explored in order to achieve room temperature
applications. There are some indications that
InGaAs/AlGaAs might be a good candidate.Comment: 20 pages, 10 figures, uses RevTeX and psfig, submitted to Physical
Review
Exciton dephasing in ZnSe quantum wires
The homogeneous linewidths of excitons in wet-etched ZnSe quantum wires of lateral sizes down to 23 nm are studied by transient four-wave mixing. The low-density dephasing time is found to increase with decreasing wire width. This is attributed mainly to a reduction of electron-exciton scattering within the wire due to the electron trapping in surface states and exciton localization. The exciton-exciton scattering efficiency, determined by the density dependence of the exciton dephasing, is found to increase with decreasing win width. This is assigned to the reduced phase space in a quasi-one-dimensional system, enhancing the repulsive interaction between excitons due to Pauli blocking
Analytical normalization of resonant states in photonic crystal slabs and periodic arrays of nanoantennas at oblique incidence
We present an analytical formulation for the normalization of resonant states at oblique incidence in one- and
two-dimensional periodic structures with top and bottom boundaries to homogeneous space, such as photonic
crystal slabs and arrays of nanoantennas. The normalization is validated by comparing the resonant state expansion using one and two resonant states with numerically exact results. The predicted changes of resonance frequency and linewidth due to perturbations of refractive index or geometry can be used to study resonantly enhanced refractive index sensing as well as the influence of disorder. In addition, the normalization is essential for the calculation of the Purcell factor
From dark to bright: First-order perturbation theory with analytical mode normalization for plasmonic nanoantenna arrays applied to refractive index sensing
We present a first-order perturbation theory to calculate the frequency shift and linewidth change of photonic resonances in one- and two-dimensional periodic structures under modifications of the surrounding refractive index. Our method is based on the resonant state expansion, for which we extend the analytical mode normalization to periodic structures. We apply this theory to calculate the sensitivity of bright dipolar and much darker quadrupolar plasmonic modes by determining the maximum shift and optimal sensing volume
Radiative corrections to the excitonic molecule state in GaAs microcavities
The optical properties of excitonic molecules (XXs) in GaAs-based quantum
well microcavities (MCs) are studied, both theoretically and experimentally. We
show that the radiative corrections to the XX state, the Lamb shift
and radiative width , are
large, about of the molecule binding energy , and
definitely cannot be neglected. The optics of excitonic molecules is dominated
by the in-plane resonant dissociation of the molecules into outgoing
1-mode and 0-mode cavity polaritons. The later decay channel,
``excitonic molecule 0-mode polariton + 0-mode
polariton'', deals with the short-wavelength MC polaritons invisible in
standard optical experiments, i.e., refers to ``hidden'' optics of
microcavities. By using transient four-wave mixing and pump-probe
spectroscopies, we infer that the radiative width, associated with excitonic
molecules of the binding energy meV, is
meV in the microcavities and
meV in a reference GaAs single quantum
well (QW). We show that for our high-quality quasi-two-dimensional
nanostructures the limit, relevant to the XX states, holds at
temperatures below 10 K, and that the bipolariton model of excitonic molecules
explains quantitatively and self-consistently the measured XX radiative widths.
We also find and characterize two critical points in the dependence of the
radiative corrections against the microcavity detuning, and propose to use the
critical points for high-precision measurements of the molecule bindingenergy
and microcavity Rabi splitting.Comment: 16 pages, 11 figures, accepted for publication in Phys. Rev.
- …
