912 research outputs found

    High Precision Measurements of Interstellar Dispersion Measure with the upgraded GMRT

    Full text link
    Pulsar radio emission undergoes dispersion due to the presence of free electrons in the interstellar medium (ISM). The dispersive delay in the arrival time of pulsar signal changes over time due to the varying ISM electron column density along the line of sight. Correcting for this delay accurately is crucial for the detection of nanohertz gravitational waves using Pulsar Timing Arrays. In this work, we present in-band and inter-band DM estimates of four pulsars observed with uGMRT over the timescale of a year using two different template alignment methods. The DMs obtained using both these methods show only subtle differences for PSR 1713+0747 and J1909−-3744. A considerable offset is seen in the DM of PSR J1939+2134 and J2145−-0750 between the two methods. This could be due to the presence of scattering in the former and profile evolution in the latter. We find that both methods are useful but could have a systematic offset between the DMs obtained. Irrespective of the template alignment methods followed, the precision on the DMs obtained is about 10−310^{-3} pc cm−3^{-3} using only BAND3 and 10−410^{-4} pc cm−3^{-3} after combining data from BAND3 and BAND5 of the uGMRT. In a particular result, we have detected a DM excess of about 5×10−35\times10^{-3} pc cm−3^{-3} on 24 February 2019 for PSR J2145−-0750. This excess appears to be due to the interaction region created by fast solar wind from a coronal hole and a coronal mass ejection (CME) observed from the Sun on that epoch. A detailed analysis of this interesting event is presented.Comment: 11 pages, 6 figures, 2 tables. Accepted by A&

    Measurement of the mass difference and the binding energy of the hypertriton and antihypertriton

    Full text link
    According to the CPT theorem, which states that the combined operation of charge conjugation, parity transformation and time reversal must be conserved, particles and their antiparticles should have the same mass and lifetime but opposite charge and magnetic moment. Here, we test CPT symmetry in a nucleus containing a strange quark, more specifically in the hypertriton. This hypernucleus is the lightest one yet discovered and consists of a proton, a neutron, and a Λ\Lambda hyperon. With data recorded by the STAR detector{\cite{TPC,HFT,TOF}} at the Relativistic Heavy Ion Collider, we measure the Λ\Lambda hyperon binding energy BΛB_{\Lambda} for the hypertriton, and find that it differs from the widely used value{\cite{B_1973}} and from predictions{\cite{2019_weak, 1995_weak, 2002_weak, 2014_weak}}, where the hypertriton is treated as a weakly bound system. Our results place stringent constraints on the hyperon-nucleon interaction{\cite{Hammer2002, STAR-antiH3L}}, and have implications for understanding neutron star interiors, where strange matter may be present{\cite{Chatterjee2016}}. A precise comparison of the masses of the hypertriton and the antihypertriton allows us to test CPT symmetry in a nucleus with strangeness for the first time, and we observe no deviation from the expected exact symmetry

    Elliptic flow of electrons from heavy-flavor hadron decays in Au+Au collisions at sNN=\sqrt{s_{\rm NN}} = 200, 62.4, and 39 GeV

    Full text link
    We present measurements of elliptic flow (v2v_2) of electrons from the decays of heavy-flavor hadrons (eHFe_{HF}) by the STAR experiment. For Au+Au collisions at sNN=\sqrt{s_{\rm NN}} = 200 GeV we report v2v_2, for transverse momentum (pTp_T) between 0.2 and 7 GeV/c using three methods: the event plane method (v2v_{2}{EP}), two-particle correlations (v2v_2{2}), and four-particle correlations (v2v_2{4}). For Au+Au collisions at sNN\sqrt{s_{\rm NN}} = 62.4 and 39 GeV we report v2v_2{2} for pT<2p_T< 2 GeV/c. v2v_2{2} and v2v_2{4} are non-zero at low and intermediate pTp_T at 200 GeV, and v2v_2{2} is consistent with zero at low pTp_T at other energies. The v2v_2{2} at the two lower beam energies is systematically lower than at sNN=\sqrt{s_{\rm NN}} = 200 GeV for pT<1p_T < 1 GeV/c. This difference may suggest that charm quarks interact less strongly with the surrounding nuclear matter at those two lower energies compared to sNN=200\sqrt{s_{\rm NN}} = 200 GeV.Comment: Version accepted by PR
    • …
    corecore