1,331 research outputs found

    Successive encoding of correlated sources

    Full text link

    Semi-naive dimensional renormalization

    Get PDF
    We propose a treatment of γ5\gamma^5 in dimensional regularization which is based on an algebraically consistent extension of the Breitenlohner-Maison-'t Hooft-Veltman (BMHV) scheme; we define the corresponding minimal renormalization scheme and show its equivalence with a non-minimal BMHV scheme. The restoration of the chiral Ward identities requires the introduction of considerably fewer finite counterterms than in the BMHV scheme. This scheme is the same as the minimal naive dimensional renormalization in the case of diagrams not involving fermionic traces with an odd number of γ5\gamma^5, but unlike the latter it is a consistent scheme. As a simple example we apply our minimal subtraction scheme to the Yukawa model at two loops in presence of external gauge fields.Comment: 28 pages, 3 figure

    Large NcN_c Universality of The Baryon Isgur--Wise Form Factor: The Group Theoretical Approach

    Get PDF
    In a previous article, it has been proved under the framework of chiral soliton model that the same Isgur--Wise form factor describes the semileptonic Λb→Λc\Lambda_b\to\Lambda_c and Σb(∗)→Σc(∗)\Sigma^{(*)}_b\to\Sigma^{(*)}_c decays in the large NcN_c limit. It is shown here that this result is in fact independent of the chiral soliton model and is solely the consequence of the spin-flavor SU(4) symmetry which arises in the baryon sector in the large NcN_c limit.Comment: 10 pages in REVTeX, no figure

    Amplitude analysis of hadron decays

    Get PDF
    We provide succinct covariant amplitude decompositions of 2-body weak hadronic decays, with which to compare data, including exclusive rates, helicity amplitudes and polarizations. For weak decays, the systematic dependence of these amplitudes on masses and quantum numbers of participating particles are determined within a factor of about two by the CKM angles and the Fermi constant so theoretical models need to be much more accurate if they are to be convincing.Comment: 31 pages, RevTe

    Form-factor-independent test of lepton universality in semileptonic heavy meson and baryon decays

    Get PDF
    In the semileptonic decays of heavy mesons and baryons, the lepton-mass dependence factors out in the quadratic cos2θ coefficient of the differential cosθ distribution. We call the corresponding normalized coefficient the convexity parameter. This observation opens the path to a test of lepton universality in semileptonic heavy meson and baryon decays that is independent of form-factor effects. By projecting out the quadratic rate coefficient, dividing out the lepton-mass-dependent factor, and restricting the phase space integration to the τ lepton phase space, one can define optimized partial rates which, in the Standard Model, are the same for all three (e,μ,τ) modes in a given semileptonic decay process. We discuss how the identity is spoiled by new physics effects. We discuss semileptonic heavy meson decays such as B¯0→D(∗)+ℓ-ν¯ℓ and Bc-→J/ψ(ηc)ℓ-ν¯ℓ and semileptonic heavy baryon decays such as Λb→Λcℓ-ν¯ℓ for each ℓ=e, μ, τ

    Exclusive semileptonic decays of D and Ds mesons in the covariant confining quark model

    Get PDF
    Recently, the BESIII collaboration has reported numerous measurements of various D(s) meson semileptonic decays with significantly improved precision. Together with similar studies carried out at BABAR, Belle, and CLEO, new windows to a better understanding of weak and strong interactions in the charm sector have been opened. In light of new experimental data, we review the theoretical description and predictions for the semileptonic decays of D(s) to a pseudoscalar or a vector meson. This review is essentially an extended discussion of our recently published results obtained in the framework of the covariant confining quark model

    Spectral fluctuation characterization of random matrix ensembles through wavelets

    Full text link
    A recently developed wavelet based approach is employed to characterize the scaling behavior of spectral fluctuations of random matrix ensembles, as well as complex atomic systems. Our study clearly reveals anti-persistent behavior and supports the Fourier power spectral analysis. It also finds evidence for multi-fractal nature in the atomic spectra. The multi-resolution and localization nature of the discrete wavelets ideally characterizes the fluctuations in these time series, some of which are not stationary.Comment: 7 pages, 2 eps figure

    Optimized Variables of the Study of Λb\Lambda_b Polarization

    Full text link
    The value of the bb-baryon polarization can be extracted from inclusive data at LEP with better than 10\% precision based on current statistics. We present a new variable by which to measure the polarization, which is the ratio of the average electron energy to the average neutrino energy. This variable is both sensitive to polarization and insensitive to fragmentation uncertainties.Comment: 10 pages (LaTeX), 2 figures, MIT-CTP-2270, CERN-PPE/94-0

    Importance of Tests for the Complete Lorentz Structure of the t --> W+ b vertex at Hadron Colliders

    Full text link
    The most general Lorentz-invariant decay-density-matrix for t→W+b→(l+ν)bt\to W^{+}b\to (l^{+}\nu)b, or for t→W+b→(jdˉju)bt\to W^{+}b\to (j_{\bar d}j_u)b, is expressed in terms of eight helicity parameters. The parameters are physically defined in terms of partial-width-intensities for polarized-final-states in t→W+bt\to W^{+}b decay. The parameters are the partial width, the bb quark's chirality parameter ξ\xi, the W+W^+ polarimetry parameter σ\sigma, a "pre-SSB" test parameter ζ\zeta, and four WLW_{L}-WTW_{T} interference parameters η\eta, η′\eta^{'}, ω\omega, ω′\omega^{'} which test for T~FS\tilde T_{FS} violation. They can be used to test for non-CKM-type CP violation, anomalous ΓL,T\Gamma_{L,T}'s, top weak magnetism, weak electricity, and second-class currents. By stage-two spin-correlation techniques, percent level statistical uncertainites are typical for measurements at the Tevatron, and several mill level uncertainites are typical at the LHC.Comment: Minor clarifications. Expression for r_{+-} corrected. 19 pages LaTex + Tables + 1 Figur

    Radiative Decay of Vector Quarkonium: Constraints on Glueballs and Light Gluinos

    Full text link
    Given a resonance of known mass, width, and J^{PC}, we can determine its gluonic branching fraction, b(R->gg), from data on its production in radiative vector quarkonium decay, V -> gamma+R. For most resonances b(R->gg) is found to be O(10%), consistent with being q-qbar states, but we find that both pseudoscalars observed in the 1440 MeV region have b(R->gg) ~ 1/2 - 1, and b(f_0^{++}->gg) ~ 1/2. As data improves, b(R->gg) should be a useful discriminator between q-qbar and gluonic states and may permit quantitative determination of the extent to which a particular resonance is a mixture of glueball and q-qbar. We also examine the regime of validity of pQCD for predicting the rate of V -> gamma+eta_gluino, the ``extra'' pseudoscalar bound state which would exist if there were light gluinos. From the CUSB limit on peaks in Upsilon -> gamma X, the mass range 3 GeV < m(eta_gluino) < 7 GeV can be excluded. An experiment must be significantly more sensitive to exclude an eta_gluino lighter than this.Comment: 36pp (inc figs),RU-94-04. (Replaces original which didn't latex correctly and didn't have figures.
    • …
    corecore