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In the semileptonic decays of heavy mesons and baryons, the lepton-mass dependence factors out in the
quadratic cos2 θ coefficient of the differential cos θ distribution. We call the corresponding normalized
coefficient the convexity parameter. This observation opens the path to a test of lepton universality in
semileptonic heavy meson and baryon decays that is independent of form-factor effects. By projecting out
the quadratic rate coefficient, dividing out the lepton-mass-dependent factor, and restricting the phase space
integration to the τ lepton phase space, one can define optimized partial rates which, in the Standard Model,
are the same for all three ðe; μ; τÞmodes in a given semileptonic decay process. We discuss how the identity
is spoiled by new physics effects. We discuss semileptonic heavy meson decays such as B̄0 → Dð�Þþl−ν̄l
and B−

c → J=ψðηcÞl−ν̄l and semileptonic heavy baryon decays such as Λb → Λcl−ν̄l for each l ¼ e, μ, τ.

DOI: 10.1103/PhysRevD.103.093001

I. INTRODUCTION

Recently, there has been an extraordinary amount of
experimental and theoretical activity on the analysis of
semileptonic heavy meson and baryon decays. The semi-
leptonic decays B → Dð�Þ þ lν̄l (Dð�Þ ¼ D or D�, l ¼ e,
μ, τ) are the best-studied processes. Starting with the

BABAR papers [1,2], this upsurge of activity has been
fueled by possible observations of the violation of lepton
flavor universality which, if true, would signal possible new
physics (NP) contributions in these decays. The decays
B → Dð�Þ þ τν̄τ have been also studied by the Belle [3–6]
and LHCb [7] experiments. The present situation concern-
ing the so-called flavor anomalies is summarized in
Refs. [8–11].
The present tests of lepton flavor universality suffer from

their dependence on the assumed form of the q2 behavior of
the transition form factors. In the Standard Model (SM), the
three semileptonic ðl ¼ e; μ; τÞmodes of a given decay are
governed by the same set of form factors. However, due to
the kinematical constraintm2

l ≤ q2 ≤ ðm1 −m2Þ2, the form
factors are probed in different regions of q2. Furthermore,
the helicity flip factor δl ¼ m2

l=2q
2 multiplying the hel-

icity flip contributions provides an additional weight factor
depending on q2 and the lepton mass, which differ for the
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three modes. All in all, the tests of lepton universality based
on rate measurements alone suffer from a complex inter-
play of the above two effects which is difficult to control.
Ultimately, such tests require the exact knowledge of the q2

behavior of the various transition form factors, which is
difficult to obtain with certainty (see, e.g., Ref. [12]).
Instead, one would prefer tests of lepton universality which
are independent of form-factor effects such as we are
proposing in this paper.
It turns out that the above two obstacles to a clean test of

lepton universality can be overcome by (i) restricting the
analysis to the phase space of the τ mode and (ii) choosing
angular observables for which the helicity flip contributions
can be factored out. Fortunately, such an observable is
provided by the coefficient of the cos2 θ contribution in the
differential cos θ distribution.
The restriction to a reduced phase space will lead to

a loss in rate for the l ¼ μ, e modes which will hopefully
be compensated by the 40-fold increase in luminosity
provided by the SuperKEKb accelerator at the Belle II
detector. For example, the loss in rate through the phase
space reduction ðΓtot − ΓredÞ=Γtot is given by Oð50Þ% and
Oð30Þ% for the decays B̄0 → Dþl−ν̄l and B̄0 → D�þl−ν̄l
(l ¼ e, μ), respectively. Much more demanding in terms of
experimental accuracy is the fact that the proposed test
requires an angular analysis which is not mandatory in
those tests using the rate alone.
The proposed test of lepton universality will lead to the

SM equality of certain optimized (“optd”) rates Γoptd
U−2L in

the three ðe; μ; τÞ modes; i.e., one has

Γoptd
U−2LðeÞ ¼ Γoptd

U−2LðμÞ ¼ Γoptd
U−2LðτÞ: ð1Þ

While the actual values of the optimized rates in Eq. (1) are
form-factor dependent, the unit ratio of any of the two
optimized rates in Eq. (1) or, equivalently, the ratio of the
corresponding branching fractions is form-factor indepen-
dent; i.e., one has

Roptdðl;l0Þ ¼ Γoptd
U−2LðlÞ

Γoptd
U−2Lðl0Þ ¼

Boptd
U−2LðlÞ

Boptd
U−2Lðl0Þ ¼ 1: ð2Þ

In this way, one can test μ=e, τ=μ, and τ=e lepton
universality regardless of form-factor effects. NP contri-
butions designed to strengthen the τ rate will clearly lead to
a violation of the equalities (1) or the unit ratio of optimized
rates (2). The size of the NP violations can be used to
constrain the parameter space of the NP contributions in a
model-dependent way.

II. GENERIC DIFFERENTIAL cos θ
DISTRIBUTION

We discuss three kinds of semileptonic heavy hadron
decays involving the b → c current transition, namely,

the decays Pð0−Þ → P0ð0−Þlν̄, Pð0−Þ → Vð1−Þlν̄, and
Bð1=2þÞ → B0ð1=2þÞlν̄. We expand the generic differ-
ential ðq2; cos θÞ distribution for these decays in terms of
their helicity structure functions [13–20]

d2Γ
dq2d cos θ

¼ 2

2S1 þ 1

3

8

Γ0jq⃗jq2v2
m7

1

× ðA0 þ A1 cos θ þ A2 cos2 θÞ; ð3Þ

where S1 is the spin of the initial hadron and

Γ0 ¼
G2

FjVcbj2m5
1

192π3
ð4Þ

is the fundamental rate occurring in the weak three-body
decay transitions of particle with mass m1 and governed by
the weak coupling GFjVcbj. The momentum transfer is
denoted by q ¼ p1 − p2, and jq⃗j ¼ jp⃗2j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
QþQ−

p
=2m1

is the momentum of the daughter particle in the rest system
of the parent particle with Q� ¼ ðm1 �m2Þ2 − q2. The
polar angle of the charged lepton in the ðl; νlÞ c.m. system
relative to the momentum direction of the Woff−shell is
denoted by θ.
The coefficients A0, A1, and A2 are given, respec-

tively, by

A0 ¼ HU þ 2HL þ 2δlðHU þ 2HSÞ; ð5Þ

A1 ¼ −2ðHP þ 4δlHSLÞ; ð6Þ

A2 ¼ vðHU − 2HLÞ: ð7Þ

In Eq. (6), we have introduced the velocity-type parameter
v ¼ 1 −m2

l=q
2 which, when expressed in terms of the

helicity flip factor δl ¼ m2
l=2q

2, reads v ¼ 1–2δl. The
helicity structure functions HXðX ¼ U;L;…Þ are bilinear
combinations of the helicity amplitudes which will be
specified later on. Note that the coefficient A2 factors into
the q2- and lepton-mass-dependent factor v ¼ 1 −m2

l=q
2

and the q2-dependent combinationHUðq2Þ − 2HLðq2Þ. We
mention that, instead of expanding the ðq2; cos θÞ distri-
bution in terms of helicity structure functions as in Eq. (3),
one can also expand the decay distribution in terms of
invariant structure functions [21–24].
The cosine of the polar angle θ can be related to the

energy El of the lepton measured in the rest system of the
parent particle. The relation reads (see, e.g., [13,16])

cos θ ¼ 2El − q0ð1þ 2δlÞ
jq⃗jv ð8Þ

with −1 ≤ cos θ ≤ 1. The energy of the off-shell W boson
in the rest system of the parent particle is given by
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q0 ¼ ðm2
1 −m2

2 þ q2Þ=ð2m1Þ: ð9Þ

For our purposes, it is more convenient to rewrite the
cos θ distribution in terms of the Legendre polynomials.
One of the advantages of the Legendre representation is that
one can project out the coefficient A2 in a straightforward
way. One has

d2Γ
dq2dcosθ

¼ 1

2S1þ 1

Γ0jq⃗jq2v2
m7

1

fHtotðq2;m2
lÞP0ðcosθÞ

þH1ðq2;m2
lÞP1ðcosθÞþ vH2ðq2ÞP2ðcosθÞg:

ð10Þ
The coefficient functions Htot, H1, and H2 are given,
respectively, by

Htotðq2; m2
lÞ ¼ ð1þ δlÞðHU þHLÞ þ 3δlHS;

H1ðq2; m2
lÞ ¼ −

3

2
ðHP þ 4δlHSLÞ;

H2ðq2Þ ¼
1

2
ðHU − 2HLÞ ¼

1

2
HU−2L: ð11Þ

For the convenience of the reader, we list some properties
of the Legendre polynomials:

P0ðcos θÞ ¼ 1; P1ðcos θÞ ¼ cos θ;

P2ðcos θÞ ¼
1

2
ð3cos2θ − 1Þ: ð12Þ

The Legendre polynomials satisfy the orthonormality
relation

Z þ1

−1
dxPmðxÞPnðxÞ ¼

2

2nþ 1
δmn: ð13Þ

It is now straightforward to extract the observables Htot,
H1, and H2 from Eq. (10) by folding the angular distri-
bution with the relevant Legendre polynomial. For in-
stance, the differential decay rate is obtained by folding in
P0ðcos θÞ as follows:

dΓ
dq2

¼
Z

1

−1
d cos θ

d2Γ
dq2d cos θ

P0ðcos θÞ

¼ 2

2S1 þ 1

Γ0jq⃗jq2v2
m7

1

Htotðq2; m2
lÞ: ð14Þ

The partial differential rate dΓU−2L=dq2 can be projected
out by folding in P2ðcos θÞ according to

dΓU−2L

dq2
¼ 10

Z
1

−1
d cos θ

d2Γ
dq2d cos θ

P2ðcos θÞ

¼ 2

2S1 þ 1

Γ0jq⃗jq2v3
m7

1

HU−2Lðq2Þ; ð15Þ

where the helicity structure function HU−2Lðq2Þ defined in
Eq. (11) is a function of q2 only (see also Refs. [22–24]).
The overall factor 10 in Eq. (15) has been chosen such to
have the same normalization of Eqs. (14) and (15).
In Refs. [17,18], we have defined a convexity parameter

CFðq2;lÞ as a measure of the curvature of the cos θ
distribution by taking the second derivative of the cos θ
distribution. The relation of the convexity parameter to the
ratio of the two differential rates (14) and (15) is given by

CFðq2;lÞ ¼
3

4

dΓU−2Lðq2;lÞ=dq2
dΓðq2;lÞ=dq2 : ð16Þ

Also, we introduce the average values of the convexity
parameter hCl

Fi where the average is taken in the interval
m2

τ ≤ q2 ≤ ðm1 −m2Þ2 for both μ and τ modes:

hCl
Fi ¼

3

4

R ðm1−m2Þ2
m2

τ
dq2dΓU−2Lðq2;lÞ=dq2R ðm1−m2Þ2

m2
τ

dq2dΓðq2;lÞ=dq2
; l ¼ μ; τ:

ð17Þ

An interesting method to compare the theoretical prediction
for the angular observables like the convexity parameter
with experimental data was proposed in Ref. [25]. It is
based on counting the number of events in certain regions
of the Dalitz plot.

III. OPTIMIZED OBSERVABLES

The possible breaking of lepton flavor universality is
usually studied by analyzing the ratios of rates or, equiv-
alently, the ratio of branching ratios for the tau and muon
modes. As discussed in the introduction, one can remove
the lepton-mass effects by introducing two improvements.
First, we propose to analyze observables in the common
phase space region m2

τ ≤ q2 ≤ ðm1 −m2Þ2 as has been
suggested before in Refs. [26–28]. As an example, in
Fig. 1, we show the ðq2; cos θÞ phase space for the decay

FIG. 1. ðq2; cos θÞ phase space for B̄0 → Dþ þ l− þ ν̄l. The
hatched region shows the l ¼ τ phase space.
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B̄0 → Dþ þ l− þ ν̄l, where the hatched area shows the
common phase space region m2

τ ≤ q2 ≤ ðm1 −m2Þ2.
Second, we reweigh suitable observables in which the
lepton-mass dependence factors out by dropping the overall
lepton-mass-dependent factor. As Eqs. (3) and (10) show,
such an observable is available through the coefficient of
the quadratic cos2 θ term in the angular decay distribution
proportional to the helicity structure function vHU−2L.
Based on Eq. (15), we define an optimized differential

partial rate by dividing out the factor v3. One has

dΓoptd
U−2Lðq2;lÞ
dq2

¼ v−3
dΓU−2Lðq2;lÞ

dq2

¼ 2Γ0

2S1 þ 1

jq⃗jq2
m7

1

HU−2Lðq2Þ; ð18Þ

which by construction does not depend on the lepton mass.
In terms of the ratios of branching fractions

Boptd
U−2Lðq2;lÞ ¼ τ

dΓoptd
U−2Lðq2;lÞ
dq2

; ð19Þ

where τ is the lifetime of the respective hadron, Eq. (18)
leads to

Roptd
U−2Lðq2;l;l0Þ ¼ Boptd

U−2Lðq2;lÞ
Boptd
U−2Lðq2;l0Þ ¼ 1: ð20Þ

Equation (20) can be used to test lepton universality
on the differential q2 level by analyzing the ratios
of the optimized branching fractions Roptd

U−2Lðq2; τ; μÞ ¼
Roptd
U−2Lðq2; τ; eÞ ¼ Roptd

U−2Lðq2; μ; eÞ in the reduced phase
space region m2

τ ≤ q2 ≤ q2max. In practice, one would lump
the light lepton modes together and concentrate on the ratio
of branching fractions Roptd

U−2Lðq2; τ; ðμþ eÞÞ ¼ 1=2.
After q2 integration over the reduced phase space region,

one has

Γoptd
U−2LðlÞ ¼

Z ðm1−m2Þ2

m2
τ

dq2
dΓoptd

U−2Lðq2;lÞ
dq2

: ð21Þ

The proposed test of lepton universality will lead to the
equality of the optimized partial rates Γoptd

U−2LðlÞ in the three
ðe; μ; τÞ modes:

Γoptd
U−2LðeÞ ¼ Γoptd

U−2LðμÞ ¼ Γoptd
U−2LðτÞ ð22Þ

or, equivalently, to the equality of the three corresponding
optimized branching ratios:

Boptd
U−2LðeÞ ¼ Boptd

U−2LðμÞ ¼ Boptd
U−2LðτÞ: ð23Þ

The equality of the three optimized rates or optimized
branching ratios is independent of form-factor effects,
while the actual value of the optimized rates or optimized
branching ratios is form-factor dependent and is, thus,
model dependent. However, the ratio of the ðe; μ; τÞ
branching fractions is predicted to be equal to one,
independently of form-factor effects; i.e., one has

Roptd
U−2Lðl;l0Þ ¼ Boptd

U−2LðlÞ
Boptd
U−2Lðl0Þ ¼ 1: ð24Þ

Since the ðq2; cos θÞ phase space is rectangular, the q2

and cos θ integrations can be interchanged. One can,
therefore, first integrate over q2 and then do the U − 2L
projection rather than first projecting out HU−2L and then
doing the q2 integration. This may be of advantage in the
experimental analysis.
Note that our definition of the optimized rates or

branching ratios differs from the one used in Ref. [28].
In order to differentiate between the two definitions, we
denote our optimized rates by the label “optd” instead of
the label “opt” used in Ref. [28]. The authors of Ref. [28]
define an optimized rate ratio

Ropt ¼
R ðm1−m2Þ2
m2

τ
dΓoptðτÞ=dq2R ðm1−m2Þ2

m2
τ

ð1 − 2δτÞ2ð1þ δτÞdΓoptðμÞ=dq2
> 1:

ð25Þ

The numerator exceeds the denominator because of the
addition of a definitely positive scalar contribution in the
numerator.
The idea behind the definition (25) is to define an R

measure Ropt which minimizes the propagation of form-
factor errors to the optimized R measure Ropt. This goal is,
in fact, achieved by the R measure Ropt (25) as shown
in Ref. [28].

IV. THREE CLASSES OF
SEMILEPTONIC DECAYS

We now discuss three classes of prominent b → c-
induced semileptonic decays in turn. We begin with the
decay Pð0−Þ → P0ð0−Þlν̄l.

A. Pð0− Þ → P0ð0− Þlν̄l decay

The decays B̄0 → Dþl−ν̄l and Bþ
c → ηclþνl belong to

this class of decays. The two form factors describing the
B → D transition are defined by (see, e.g., Refs. [13,18])

hP2jJVμ jP1i ¼ Fþðq2Þðp1 þ p2Þμ þ F−ðq2Þqμ: ð26Þ

The corresponding helicity amplitudes HλW read
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H0 ¼
2m1jq⃗jffiffiffiffiffi

q2
p Fþðq2Þ; H� ¼ 0;

Ht ¼
1ffiffiffiffiffi
q2

p ðmþm−Fþðq2Þ þ q2F−ðq2ÞÞ; ð27Þ

where m� ¼ m1 �m2.
The longitudinal and scalar helicity structure functions

are given in terms of the bilinear combinations

HL ¼ jH0j2; HU ¼ jHþj2 þ jH−j2 ¼ 0; HS ¼ jHtj2:
ð28Þ

Note that the longitudinal structure function HL is
proportional to jq⃗j2. Since the unpolarized transverse
structure function HU is zero, one has HU−2L ∼ jq⃗j2.

B. Pð0− Þ → Vð1− Þlν̄l decay

Interesting decays in this class are B̄0 → D�þl−ν̄l and
B−
c → J=Ψl−ν̄l. We define invariant form factors accord-

ing to the expansion (see, e.g., Refs. [13,18])

hV2jJV−Aμ jP1i ¼
ϵ†α

mþ
ð−gμαPqA0ðq2Þ þ PμPαAþðq2Þ

þ qμPαA−ðq2Þ þ iεμαPqVðq2ÞÞ: ð29Þ

One has to specify the helicity amplitudes HλWλV by the
two helicities λW and λV of the off-shell W boson and the
daughter vector meson. The helicity amplitudes are given
by

Ht0 ¼
m1m−jq⃗j
m2

ffiffiffiffiffi
q2

p
�
−A0 þ Aþ þ q2

mþm−
A−

�
;

H�1�1 ¼ m−

�
−A0 �

2m1

mþm−
jq⃗jV

�
;

H00 ¼
m−

2m2

ffiffiffiffiffi
q2

p
�
−ðmþm− − q2ÞA0 þ

4m2
1

mþm−
jq⃗j2Aþ

�
:

ð30Þ

The helicity structure functions read

HU ¼ jHþ1þ1j2 þ jH−1−1j2; HL ¼ jH00j2;
HS ¼ jHt0j2: ð31Þ

Note thatHS;HU−2L ∼ jq⃗j2. This scaling is obvious forHS.
In the case ofHU−2L, it requires a little algebra based on the
use of the identity:

jq⃗j2 ¼ ðmþm− − q2Þ2
4m2

1

−
m2

2

m2
1

q2: ð32Þ

C. Bð12 + Þ → B0ð12 + Þlν̄l decay

One defines the invariant form factors by writing (see,
e.g., Refs. [17,19])

hB2jJV=Aμ jB1i ¼ ūpðp2Þ
�
FV=A
1 ðq2Þγμ − i

FV=A
2 ðq2Þ
m1

σμνqν

þ FV=A
3 ðq2Þ
m1

qμ

�
ðI=γ5Þunðp1Þ: ð33Þ

The corresponding helicity amplitudes HV=A
λ2λW

read

HV=A
1
2
t

¼
ffiffiffiffiffiffiffi
Q�

p
ffiffiffiffiffi
q2

p
�
m∓FV=A

1 ðq2Þ � q2

m1

FV=A
3 ðq2Þ

�
;

HV=A
1
2
0

¼
ffiffiffiffiffiffiffi
Q∓

p
ffiffiffiffiffi
q2

p
�
m�F

V=A
1 ðq2Þ � q2

m1

FV=A
2 ðq2Þ

�
;

HV=A
1
2
1

¼ ffiffiffiffiffiffiffiffiffiffi
2Q∓

p �
FV=A
1 ðq2Þ �m�

m1

FV=A
2 ðq2Þ

�
: ð34Þ

From parity or from an explicit calculation, one has
HV

−λ2−λW ¼ þHV
λ2λW

and HA
−λ2−λW ¼ −HA

λ2λW
. The relevant

helicity structure functions read

HU ¼ 2

�
jHV

þ1
2
þ1
j2 þ jHA

þ1
2
þ1
j2
�
;

HL ¼ 2

�
jHV

þ1
2
0
j2 þ jHA

þ1
2
0
j2
�
;

HS ¼ 2

�
jHV

þ1
2
t
j2 þ jHA

þ1
2
t
j2
�
: ð35Þ

With a little algebra, one finds HU−2L ∼ jq⃗j2.
In all three classes of decays, one finds that the helicity

structure function combination HU−2L ¼ HU − 2HL is
proportional to jq⃗j2. This leads to a depletion of the partial
rate dΓopt

U−2L=dq
2 close to the zero recoil q2 ¼ ðm1 −m2Þ2,

where jq⃗j ¼ 0. In this paper, we do not study the parity-odd
helicity structure functions HP and HSL, which scale as
HP;HSL ∼ jq⃗j [16–19].

V. NUMERICAL RESULTS

We are now in the position to discuss the numerical
values for the optimized observables introduced in our
paper. The key point here is the choice of the form factors
characterizing the B → Dð�Þ and Λb → Λc transitions. In
addition to various model calculations, there are precise
lattice QCD determinations for these form factors. The first
lattice-QCD determination of the form factors describing

the semileptonic decays Λb → Λð�Þ
c þ lν̄l has been per-

formed in Refs. [29–31]. The Fermilab Lattice and MILC
Collaborations have presented the computations of zero-
recoil form factor for B → Dð�Þ þ lν̄l decay in Ref. [32]
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and unquenched lattice-QCD calculation of the hadronic
form factors for the exclusive decay B → Dþ lν̄l at
nonzero recoil in Ref. [33]. In Ref. [34], the HPQCD
Collaboration has presented a lattice QCD calculation of
the B → Dþ lν̄l decay for the entire physical q2 range.
The branching fraction ratio was found to be
RðDÞ ¼ 0.300ð8Þ. The B −D calculations in particular
are precise, cover various q2 values, and have been
combined with experimental data for the light lepton q2

distribution to cover the full spectrum. Something similar
has been done with B −D� as well; see Refs. [35–38]. The
lattice determinations of the form factors were also
employed to extract the value of Vcb. The numerical values
for the optimized observables introduced in this paper are
calculated by using the form factors obtained in the
framework of the covariant confined quark model
(CCQM). The behavior of all CCQM form factors was
found to be quite smooth in the full kinematical range of the
semileptonic transitions. In fact, they are well represented
by a two-parameter representation in terms of a double-pole
parametrization:

Fðq2Þ ¼ Fð0Þ
1 − asþ bs2

; s ¼ q2

m2
1

: ð36Þ

The values of the fitted parameters a, b, and Fðq2 ¼ 0Þ are
listed in Eq. (34) of Ref. [18] for the B → Dð�Þ transition, in
Table I of Ref. [39] for the Bc → ηc and Bc → J=ψ
transitions, and in Eq. (59) of Ref. [17] for the Λb → Λc
transition. The values of the lepton and hadron masses and
their lifetimes as well as the value of the Cabibbo-
Kobayashi-Maskawa matrix element Vcb are taken from
the PDG [40].
In Table I, we list the average values of the convexity

hCl
Fi. For the two transitions B → D and Bc → ηc, we get

hCμ
Fi ¼ −1.49 ≃ −3=2 in the μmode. The reason for such a

common value in both transitions is that there is no
transverse contribution in the P → P0 transitions and the
muon mass is strongly suppressed in comparison with the τ
lepton mass ðmμ=mτ ≪ 1Þ. In the limit mμ=mτ ≡ 0, one
gets hCμ

Fi≡ −3=2. In case of the τ mode for the two P →
P0 transitions, the average convexity parameter is quite
small: −0.26 for the B → D transition and −0.24 for the
Bc → ηc transition. Note that the entries in Table I are
form-factor dependent. In case of the P → V transitions,
one can see that the average convexity parameter is again

suppressed for the τ modes. We also notice that hCl
Fi is

more suppressed for the P → V transitions in comparison
with the P → P0 transitions. Finally, for the Λb → Λc

transition, we get the hCl
Fi parameters, which lie between

the ones for the P → V and P → P0 transitions.
In Fig. 2, we show the behavior of dΓoptd

U−2L=dq
2

and dΓU−2L=dq2 ¼ v3dΓoptd
U−2L=dq

2 (τ mode) in the region
m2

τ ≤ q2 ≤ ðm1 −m2Þ2. In the case of l; μ modes, the two
above rates coincide with high accuracy.
The differential rates are largest at threshold q2 ¼ m2

τ

and go to zero at the zero-recoil point q2 ¼ ðm1 −m2Þ2
with the characteristic jq⃗j3 dependence. The (form-factor-
dependent) numerical values of the integrated observables
are given in Table II. We also list their average values for
the range 4 GeV2 ≤ q2 ≤ ðm1 −m2Þ2 to highlight the fact
that the differential rates are largest in the region close to
threshold, where, in the τ mode, the division by v3 is
potentially problematic from the experimental point
of view.
Next, we address the question of how to compare the

numerical values calculated in Table II with the outcome of
the corresponding experimental measurements. We first
assume that the number of the produced parent particles is
known, which, in the case of produced B̄0’s, we will refer to
as NðB̄0tagsÞ. For example, in eþe− annihilations on the
ϒð4SÞ resonance the bottom mesons are produced in pairs,
and the identification of a B0 on one side can be used as a
tag for the B̄0 on the opposite side. In an experimental
analysis, one counts the number of events of a given decay
and relates this to the known number of produced particles
given by NðB̄0tagsÞ.
One can then define an experimental branching fraction

by writing

BðB̄0 → Dþl−ν̄lÞ ¼
NðB̄0 → Dþl−ν̄lÞ

NðB̄0tagsÞ ; ð37Þ

which can be compared to the theoretical branching
fraction

BðB̄0 → Dþl−ν̄lÞ ¼ τðB̄0ÞΓtotðB̄0 → Dþl−ν̄lÞ: ð38Þ

In the same way, one can define an experimental optimized
branching fraction by writing

Boptd
U−2LðB̄0 → Dþl−ν̄lÞ ¼

Noptd
U−2LðB̄0 → Dþl−ν̄lÞ

NðB̄0tagsÞ ; ð39Þ

which, again, can be compared to the corresponding
theoretical branching fraction

Boptd
U−2LðB̄0 → Dþl−ν̄lÞ ¼ τðB̄0ÞΓoptd

U−2LðB̄0 → Dþl−ν̄lÞ:
ð40Þ

TABLE I. q2 averages of the convexity parameters hCμ
Fi and

hCτ
Fi in the range m2

τ ≤ q2 ≤ ðm1 −m2Þ2.
Obs B → D Bc → ηc B → D� Bc → J=ψ Λb → Λc

hCμ
Fi −1.49 −1.49 −0.27 −0.22 −0.44

hCτ
Fi −0.26 −0.24 −0.062 −0.050 −0.10
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One then defines optimized rate ratios Roptd
U−Lðl;l0Þ by

Roptd
U−Lðl;l0Þ ¼ Boptd

U−2LðlÞ
Boptd
U−2Lðl0Þ ¼

Noptd
U−2LðlÞ

Noptd
U−2Lðl0Þ ¼

Γoptd
U−2LðlÞ

Γoptd
U−2Lðl0Þ ¼ 1;

ð41Þ
which are predicted to be equal to one.

As the ratios (41) show, tagging is not really
required when measuring the optimized rate ratio
Roptd
U−Lðl;l0Þ, since the denominators NðB̄0tagsÞ drop

out when taking the ratio (41). This shows that the
optimized rate ratio Roptd

U−Lðl;l0Þ can be experimentally
determined even for untagged decays as in the B−

c and Λb
decays.

73 4 5 6 8 9 10 11 12

q2 (GeV2 )

73 4 5 6 8 9 10 11 12

q2 (GeV2 )

q2 (GeV2 )

-4

-3

-2

-1

0

1

U-2L-tau
U-2L-opt

B - D

73 4 5 6 8 9 10 11

q2 (GeV2 )
73 4 5 6 8 9 10 11

q2 (GeV2 )
73 4 5 6 8 9 10 11

-3

-2

-1

0

1

U-2L-opt
U-2L-tau

B - D
*

-4

-3

-2

-1

0

1
U-2L-opt
U-2L-tau

B
c
 - ��

c

-2

-1

0

1

U-2L-opt
U-2L-tau

B
c
 - J/�

-3

-2

-1

0

1

U-2L-opt
U-2L-tau

�
 b

 - �
 c

FIG. 2. q2 dependence of the optimized partial rate dΓoptd
U−2L=dq

2 (solid curve) and dΓU−2L=dq2 ¼ v3dΓoptd
U−2L=dq

2 (τ mode, dashed
curve) in units of 10−15 GeV−1.
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VI. NEW PHYSICS CONTRIBUTIONS

At present, b − c transition puzzles motivate many studies
of new physics due to the observed deviations from the

Standard Model predictions. There are a number of theo-
retical attempts to resolve these puzzles. See, for example,
Refs. [41,42], and other references therein. Possible NP
contributions to the semileptonic decays B̄0 → DðD�Þτ−ν̄τ
and B̄c → ηcðJ=ψÞτ−ν̄τ have been studied in our papers
[39,43,44]. The NP transition form factors have been
calculated in the full kinematic q2 range, employing again
the CCQM. The modifications of the partial differential rates
dΓU−2LðτÞ=dq2 from the differential ðq2; cos θÞ distributions
of the decays B̄0 → Dτ−ν̄τ and B̄0 → D�τ−ν̄τ are presented
in Eqs. (14) and (C1), respectively, in Ref. [43]. One has

dΓU−2LðNPÞ
dq2

¼ 2Γ0

2S1 þ 1

jq⃗jq2
m7

1

ð1 − 2δτÞ3HU−2LðNPÞ; ð42Þ

where

HU−2LðNPÞ ¼

8>>>>><
>>>>>:

−2j1þ VL þ VRj2jH0j2 þ 32jTLj2jHT j2 ðP − P0Þtransition;
ðj1þ VLj2 þ jVRj2ÞðjHþþj2 þ jH−−j2 − 2jH00j2Þ
−4ReVRðHþþH−− − jH00j2Þ
−16jTLj2ðjHþ

T j2 þ jH−
T j2 − 2jH0

T j2Þ ðP − VÞtransition :

If we recall the relations of helicities with the Lorentz form factors, then one gets

HP−P0
U−2LþNP ¼

4m2
1jq⃗j2
q2

�
−2j1þ VL þ VRj2F2þ þ 32jTLj2

q2

m2þ
F2
T

�
;

jHþþj2 þ jH−−j2 − 2jH00j2 ¼
2m2

1jq⃗j2
m2

2m
2þq2

f−ðPqÞ2A2
0 þ 2½2m2

2q
2V2 þ PqðPq − q2ÞA0Aþ� − 4m2

1jq⃗j2A2þg;

HþþH−− − jH00j2 ¼
m2

1jq⃗j2
m2

2m
2þq2

f−ðPqÞ2A2
0 − 2½2m2

2q
2V2 − PqðPq − q2ÞA0Aþ� − 4m2

1jq⃗j2A2þg;

jHþ
T j2 þ jH−

T j2 − 2jH0
T j2 ¼

2m2
1jq⃗j2
m2

2

�
8m2

2

q2
G2

1 − ðG1 þG2Þ2

þ 2

m2þ
½ðm2

1 þ 3m2
2 − q2ÞG1 þ ðPq − q2ÞG2�G0 −

4m2
1jq⃗j2
m4þ

G2
0

�
: ð43Þ

One can see that the differential rate dΓU−2L vanishes as
jq⃗j3 at zero recoil. Here, VL=R and TL are the complex
Wilson coefficients governing the NP contributions. One
has to note that the scalar operators contribute to the full
fourfold angular distribution, but they do not appear in the
coefficient proportional to cos2 θ, i.e., in the convexity
parameter. It is assumed that NP affects only leptons of the
third generation, i.e., the τ lepton mode. Note that the
lepton-mass-dependent factor v also factors out in the NP
contributions to the ðU − 2LÞ helicity structure function.
The parameters of the dipole approximation for the

calculated NP form factors are listed in Eqs. (10) and
(11) of Ref. [43] for B −D and B −D� transitions and in
Table I of Ref. [39] for Bc − ηc and Bc − J=ψ transitions.

The allowed regions for the NP Wilson coefficients have
been found by fitting the experimental data for the ratios
RðDð�ÞÞ by switching on only one of the NP operators at
a time.
In each allowed region at 2σ, the best-fit value for each

NP coupling was found. The best-fit couplings read

VL ¼ −0.23 − 0.85i; VR ¼ 0.03þ 0.60i;

TL ¼ 0.38þ 0.06i: ð44Þ

We define optimized rates for the NP contributions in the
same way as has been done for the SM in Eq. (18). In
Fig. 3, we plot the SM differential q2 distributions of the

TABLE II. The optimized partial rate Γoptd
U−2L in units of

10−14 GeV.

q2min B → D Bc → ηc B → D� Bc → J=ψ Λb − Λc

m2
τ −1.14 −1.21 −0.73 −0.49 −0.90

4 GeV2 −0.89 −0.93 −0.54 −0.36 −0.71
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optimized rates dΓoptd
U−2L=dq

2 together with the correspond-
ing (SMþ NP) distributions for the τ mode. In general,
there are four curves for each mode. To avoid oversatura-
tion of the figures, we display the upper and lower curves
only and the region between these two curves, colored in
yellow. The P → P0 optimized differential rates are
enhanced by the NP VL and VR contributions and reduced
by the NP tensor contribution TL. For the P → V tran-
sitions, the enhancement due to the NP tensor contribution
TL is quite pronounced over the whole q2 range.

The enormous size of the NP tensor contribution to the
P → V transitions also shows up in Table III, where we list
the integrated optimized rates and the τ=μ ratio of opti-
mized branching fractions

Roptd
U−2Lðτ; μÞ ¼

Γoptd
U−2LðSMþ NPÞ
Γoptd
U−2LðSMÞ : ð45Þ

The deviations of the ratio of optimized branching fractions
from the SM value of 1 is substantial and huge for the

TABLE III. Optimized ðU − 2LÞ rates in units of 10−14 GeV and rate ratios. NP effects are included in the τ mode
only.

Obs NP coupling B → Dlνl Bc → ηclνl B → D�lνl Bc → J=ψlνl

Γoptd
U−2LðSMÞ −1.14 −1.21 −0.73 −0.89

Γoptd
U−2LðSMþ NPÞ VL −1.50 −1.59 −0.96 −0.64

VR −1.62 −1.72 −0.94 −0.62
TL −0.85 −0.93 −4.46 −3.32

Roptd
U−2Lðτ; μÞ VL 1.32 1.31 1.32 0.72

VR 1.42 1.42 1.29 0.70
TL 0.75 0.77 6.11 3.73
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FIG. 3. P → P0ðVÞ semileptonic transitions taking into account NP effects for the τ mode. The q2 dependence of the optimized partial
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2.
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P → V transitions. One should be remindful of the fact that
the NP optimized τ rates and thereby the ratio of branching
fractions Boptd

U−2Lðτ; μÞ are form-factor dependent.

VII. SOME CONCLUDING REMARKS

As the authors of Ref. [22] have emphasized, it is
important to also have a look at the ðq2; ElÞ distribution
in semileptonic decays when testing lepton universality.

We briefly discuss the merits of using the ðq2; ElÞ
distribution for form-factor-independent tests of lepton
universality. One merit of ðq2; ElÞ distribution is obviously
that cos θ is a derived quantity, whereas the lepton energy
can be directly measured.
The ðq2; cos θÞ distribution (3) can be transformed to the

ðq2; ElÞ distribution by making use of the relation (8)
between cos θ and El. One obtains

dΓ
dq2dEl

¼ 1

2S1 þ 1

3q2

jq⃗j2
Γ0

m7
1

�
B0ðq2; mlÞ þ B1ðq2; mlÞ

�
El

m1

�
þ B2ðq2Þ

�
E2
l

m2
1

��
; ð46Þ

where the coefficients B0ðq2; mlÞ; B1ðq2; mlÞ, and B2ðq2Þ are given, respectively, by

B0ðq2; mlÞ ¼
1

4
ðq20ð1þ 2δlÞ2ðHU − 2HLÞ þ vjq⃗j2ðHU þ 2HL þ 2δlðHU þ 2HSÞÞ

þ 2q0jq⃗jð1þ 2δlÞðHP þ 4δlHSLÞÞ; ð47Þ

B1ðq2; mlÞ ¼ −m1ðq0ð1þ 2δlÞðHU − 2HLÞ þ jq⃗jðHP þ 4δlHSLÞÞ; ð48Þ

B2ðq2Þ ¼ m2
1ðHU − 2HLÞ: ð49Þ

The ðq2; cos θÞ distribution (46) can be seen to be well
defined in the limit jq⃗j → 0 since HP;HSL ∼ jq⃗j, and
HU − 2HL ∼ jq⃗j2 in all three classes of decays as discussed
in Sec. IV.
In Fig. 4, we show the ðq2; ElÞ phase space boundaries

of the three (e, μ, τ) modes of the semileptonic decay
B̄0 → Dþ þ l−ν̄l. The phase space boundaries are deter-
mined by the curves [14,16]

q2� ¼ 1

a
ðb�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − ac

p
Þ; ð50Þ

where

a ¼ m2
1 þm2

l − 2m1El;

b ¼ m1Elðm2
1 −m2

2 þm2
l − 2m1ElÞ þm2

lm
2
2;

c ¼ m2
lððm2

1 −m2
2Þ2 þm2

lm
2
1 − ðm2

1 −m2
2Þ2m1ElÞ:

From the relation (8) linking cos θ and El, it is not
difficult to see that the coefficients of the cos2 θ and E2

l
terms are simply related. In particular, as Eq. (49) shows,
the coefficient B2ðq2Þ of the quadratic E2

l term is propor-
tional to HU−2L and, differing from the corresponding
coefficient H2 of the ðq2; cos θÞ distribution, does not
depend on the lepton mass. A gratifying feature of the
ðq2; ElÞ analysis is the fact that the (model-dependent)
ratio A2ðq2Þ=A0ðq2; mlÞ is quite large over the whole q2

range [22].

Similar to Eq. (15), the second-order coefficient
B2ðq2Þ ¼ m2

1HU−2Lðq2Þ can be projected from the distri-
bution (46) by folding the distribution with the second-
order Legendre polynomial expressed in terms of the lepton
energy, i.e.,

P2ðcos θðElÞÞ ¼
3

2

1

jq⃗j2v2
�
4E2

l − 4Elq0ð1þ 2δlÞ

þ q20ð1þ 2δlÞ2 −
1

3
jq⃗j2v2

�
: ð51Þ

The folding has to be done within the limits ðEþ
l ; E

−
l Þ,

where (see, e.g., Refs. [14,16])

FIG. 4. ðq2; ElÞ phase space for B̄0 → Dþ þ l− þ ν̄l for the
three ðe; μ; τÞ modes.
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E�
l ¼ 1

2
ðq0ð1þ 2δlÞ � jq⃗jvÞ: ð52Þ

The zero- and first-order coefficients B0 and B1 in Eq. (46)
are removed by the folding process, since

Z
Eþ
l

El−
dElP2ðcos θðElÞÞ ¼

Z
Eþ
l

El−
EldElP2ðcos θðElÞÞ ¼ 0;

ð53Þ

as can be seen by direct calculation or by considering the
orthogonality relations

Z
Eþ
l

El−
dElP0;1ðcos θðElÞÞP2ðcos θðElÞÞ ¼ 0: ð54Þ

Similar to Eq. (15), one finds

dΓU−2L

dq2
¼ 10

Z
Eþ
l

E−
l

dEl
d2Γ

dq2dEl
P2ðcos θðElÞÞ

¼ 2

2S1 þ 1

Γ0jq⃗jq2v3
m7

1

HU−2Lðq2Þ: ð55Þ

To be sure, we have done the somewhat lengthy El
integration in Eq. (55) and confirmed the expected result
on the rhs of Eq. (55). From here on, one would proceed as
in Sec. III; i.e., one defines an optimized rate by dividing
out the lepton-mass-dependent factor v3 ¼ ð1 −m2

l=q
2Þ3.

Differing from the ðq2; cos θÞ analysis discussed in the
main text, the ðq2; ElÞ phase space is not rectangular,
which means that the q2 and El integrations are not
interchangeable. The projection of the relevant B2 coef-
ficient Eq. (55) has to be done for each q2 value, or for each
q2 bin, before q2 integration. In the τ mode, the range of El

becomes very small near threshold q2 ¼ m2
τ and near the

zero-recoil point q2 ¼ ðm1 −m2Þ2.
In summary, we have proposed a form-factor-indepen-

dent test of lepton universality for semileptonic B meson,
Bc meson, and Λb baryon decays by analyzing the twofold
ðq2; cos θÞ decay distribution. We have defined optimized
rates for the e, μ, τ modes, the ratios of which take the value
of 1 in the SM, independently of form-factor effects. The
form-factor-independent test involves a reduced phase

space for the light lepton modes which will somewhat
reduce the data sample for the light modes. The requisite
angular analysis of the twofold ðq2; cos θÞ distribution will
be quite challenging from the experimental point of view.
We have discussed new physics effects for the τ mode, the
inclusion of which will lead to large aberrations from the
SM value of 1 for the ratio of the optimized rates. As a by-
line, we have also included a discussion of the ðq2; ElÞ
decay distribution as a possible candidate for form-factor-
independent tests of lepton universality.
We conclude with two remarks. We have made a wide

survey of polarization observables in semileptonic b hadron
decays to find an observable with the requisite property that
the helicity-flip dependence factors out of the observable.
In fact, in semileptonic polarizedΛb decay, one can identify
the observable vðHP − 2HL−

Þ which possesses the desired
property [16,19]. All in all, we are looking forward to
experimental tests of lepton universality using the opti-
mized branching ratios proposed in this paper.
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