553 research outputs found

    Critical Scale-invariance in Healthy Human Heart Rate

    Full text link
    We demonstrate the robust scale-invariance in the probability density function (PDF) of detrended healthy human heart rate increments, which is preserved not only in a quiescent condition, but also in a dynamic state where the mean level of heart rate is dramatically changing. This scale-independent and fractal structure is markedly different from the scale-dependent PDF evolution observed in a turbulent-like, cascade heart rate model. These results strongly support the view that healthy human heart rate is controlled to converge continually to a critical state.Comment: 9 pages, 3 figures. Phys. Rev. Lett., to appear (2004

    Infectious Default Model with Recovery and Continuous Limit

    Full text link
    We introduce an infectious default and recovery model for N obligors. Obligors are assumed to be exchangeable and their states are described by N Bernoulli random variables S_{i} (i=1,...,N). They are expressed by multiplying independent Bernoulli variables X_{i},Y_{ij},Y'_{ij}, and default and recovery infections are described by Y_{ij} and Y'_{ij}. We obtain the default probability function P(k) for k defaults. Taking its continuous limit, we find two nontrivial probability distributions with the reflection symmetry of S_{i} \leftrightarrow 1-S_{i}. Their profiles are singular and oscillating and we understand it theoretically. We also compare P(k) with an implied default distribution function inferred from the quotes of iTraxx-CJ. In order to explain the behavior of the implied distribution, the recovery effect may be necessary.Comment: 13 pages, 7 figure

    Simulation of a Dripping Faucet

    Full text link
    We present a simulation of a dripping faucet system. A new algorithm based on Lagrangian description is introduced. The shape of drop falling from a faucet obtained by the present algorithm agrees quite well with experimental observations. Long-term behavior of the simulation can reproduce period-one, period-two, intermittent and chaotic oscillations widely observed in experiments. Possible routes to chaos are discussed.Comment: 20 pages, 15 figures, J. Phys. Soc. Jpn. (in press

    U.S. stock market interaction network as learned by the Boltzmann Machine

    Full text link
    We study historical dynamics of joint equilibrium distribution of stock returns in the U.S. stock market using the Boltzmann distribution model being parametrized by external fields and pairwise couplings. Within Boltzmann learning framework for statistical inference, we analyze historical behavior of the parameters inferred using exact and approximate learning algorithms. Since the model and inference methods require use of binary variables, effect of this mapping of continuous returns to the discrete domain is studied. The presented analysis shows that binarization preserves market correlation structure. Properties of distributions of external fields and couplings as well as industry sector clustering structure are studied for different historical dates and moving window sizes. We found that a heavy positive tail in the distribution of couplings is responsible for the sparse market clustering structure. We also show that discrepancies between the model parameters might be used as a precursor of financial instabilities.Comment: 15 pages, 17 figures, 1 tabl

    Establishment of an immortalised human ovarian surface epithelial cell line without chromosomal instability

    Get PDF
    Epithelial ovarian carcinoma is thought to derive from ovarian surface epithelium (OSE). The black box of the early molecular changes in ovarian carcinogenesis is being interpreted by the development of experimental systems employing immortalised human OSE cells. However, the existing cell lines of the OSE cells have limited utility due to chromosomal instability. Our goal was to establish new immortalised human OSE cells that retain the original characteristics of the primary cells without chromosomal alterations. Using primary human OSE cells obtained from a postmenopausal patient with endometrial cancer, five cell lines (‘HOSE1' lines) were newly established by infection with retroviral expression vectors containing type 16 human papillomavirus (HPV-16) E6, E7, a variant E6 (E6Δ151), and Bmi1 polycomb gene, in combination with telomerase reverse transcriptase (hTERT). Consequently, five HOSE1s cell lines, HOSE1s-E6/hTERT, -E7/hTERT, -E6/E7/hTERT, -E6Δ151/E7/hTERT, and -E6Δ151/Bmi1/hTERT, grew beyond the population doubling number of 200. These cell lines, except for HOSE1-E6/hTERT, essentially showed the original features of the primary human OSE cells. Of them, HOSE1-E7/hTERT preserved diploidy in a kariotype analysis, and did not show transformed phenotypes in anchorage-independent growth and tumour formation. Thus, HOSE1-E7/hTERT may provide a novel model system with which to investigate the mechanisms of early molecular changes

    Increased production of viral proteins by a 3'-LTR-deleted infectious clone of human T-cell leukemia virus type 1

    Get PDF
    We previously reported that a full-length provirus of HTLV-1 was directly constructed from the HTLV-1-transformed cell line MT-2 using overlapping polymerase chain reaction (PCR) and cloned into a plasmid vector (pFL-MT2). 293T cells transfected with pFL-MT2 alone did not produce virus particles because there was no expression of the viral transactivator protein Tax, whereas cells transfected with pFL-MT2 plus a Tax expression vector produced virus-like particles. In the process of constructing the HTLV-1 provirus by overlapping PCR, we also constructed an incomplete molecular clone, in which the 3' long terminal repeat (LTR) was replaced with the endogenous human gene, which resulted in the expression of a tax gene shorter by 43 bp. This incomplete molecular clone alone expressed Tax and produced the viral protein in transfected cells. Various clones were then constructed with different lengths of the 3' LTR and lacking the reverse-direction TATA box. The clones contained over 113 bp of the 3' LTR, with no reverse-direction TATA box, which might express the full-length tax gene, and did not produce the viral antigen. These results suggest that Tax in which the C-terminal portion is deleted is more strongly expressed than the wild-type protein and has transcriptional activity

    Establishment of Functioning Human Corneal Endothelial Cell Line with High Growth Potential

    Get PDF
    Hexagonal-shaped human corneal endothelial cells (HCEC) form a monolayer by adhering tightly through their intercellular adhesion molecules. Located at the posterior corneal surface, they maintain corneal translucency by dehydrating the corneal stroma, mainly through the Na+- and K+-dependent ATPase (Na+/K+-ATPase). Because HCEC proliferative activity is low in vivo, once HCEC are damaged and their numbers decrease, the cornea begins to show opacity due to overhydration, resulting in loss of vision. HCEC cell cycle arrest occurs at the G1 phase and is partly regulated by cyclin-dependent kinase inhibitors (CKIs) in the Rb pathway (p16-CDK4/CyclinD1-pRb). In this study, we tried to activate proliferation of HCEC by inhibiting CKIs. Retroviral transduction was used to generate two new HCEC lines: transduced human corneal endothelial cell by human papillomavirus type E6/E7 (THCEC (E6/E7)) and transduced human corneal endothelial cell by Cdk4R24C/CyclinD1 (THCEH (Cyclin)). Reverse transcriptase polymerase chain reaction analysis of gene expression revealed little difference between THCEC (E6/E7), THCEH (Cyclin) and non-transduced HCEC, but cell cycle-related genes were up-regulated in THCEC (E6/E7) and THCEH (Cyclin). THCEH (Cyclin) expressed intercellular molecules including ZO-1 and N-cadherin and showed similar Na+/K+-ATPase pump function to HCEC, which was not demonstrated in THCEC (E6/E7). This study shows that HCEC cell cycle activation can be achieved by inhibiting CKIs even while maintaining critical pump function and morphology

    Lipopolysaccharide from Gut-Associated Lymphoid-Tissue-Resident Alcaligenes faecalis: Complete Structure Determination and Chemical Synthesis of Its Lipid A

    Get PDF
    Alcaligenes faecalis is the predominant Gram-negative bacterium inhabiting gut-associated lymphoid tissues, Peyer's patches. We previously reported that an A. faecalis lipopolysaccharide (LPS) acted as a weak agonist for Toll-like receptor 4 (TLR4)/myeloid differentiation factor-2 (MD-2) receptor as well as a potent inducer of IgA without excessive inflammation, thus suggesting that A. faecalis LPS might be used as a safe adjuvant. In this study, we characterized the structure of both the lipooligosaccharide (LOS) and LPS from A. faecalis. We synthesized three lipid A molecules with different degrees of acylation by an efficient route involving the simultaneous introduction of 1- and 4′-phosphates. Hexaacylated A. faecalis lipid A showed moderate agonistic activity towards TLR4-mediated signaling and the ability to elicit a discrete interleukin-6 release in human cell lines and mice. It was thus found to be the active principle of the LOS/LPS and a promising vaccine adjuvant candidate

    A Pivotal Role of Vitamin B9 in the Maintenance of Regulatory T Cells In Vitro and In Vivo

    Get PDF
    Dietary factors regulate immunological function, but the underlying mechanisms remain elusive. Here we show that vitamin B9 is a survival factor for regulatory T (Treg) cells expressing high levels of vitamin B9 receptor (folate receptor 4). In vitamin B9-reduced condition in vitro, Treg cells could be differentiated from naïve T cells but failed to survive. The impaired survival of Treg cells was associated with decreased expression of anti-apoptotic Bcl2 and independent of IL-2. In vivo depletion of dietary vitamin B9 resulted in the reduction of Treg cells in the small intestine, a site for the absorption of dietary vitamin B9. These findings provide a new link between diet and the immune system, which could maintain the immunological homeostasis in the intestine
    • …
    corecore