12 research outputs found

    Field evaluation of selected cassava genotypes for cassava brown streak disease based on symptom expression and virus load

    Get PDF
    Background Production of cassava (Manihot esculenta Crantz), a food security crop in sub-Saharan Africa, is threatened by the spread of cassava brown streak disease (CBSD) which manifests in part as a corky necrosis in the storage root. It is caused by either of two virus species, Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), resulting in up to 100% yield loss in susceptible varieties. Methods This study characterized the response of 11 cassava varieties according to CBSD symptom expression and relative CBSV and UCBSV load in a field trial in Uganda. Relative viral load was measured using quantitative RT-PCR using COX as an internal housekeeping gene. Results A complex situation was revealed with indications of different resistance mechanisms that restrict virus accumulation and symptom expression. Four response categories were defined. Symptom expression was not always positively correlated with virus load. Substantially different levels of the virus species were found in many genotypes suggesting either resistance to one virus species or the other, or some form of interaction, antagonism or competition between virus species. Conclusions A substantial amount of research still needs to be undertaken to fully understand the mechanism and genetic bases of resistance. This information will be useful in informing breeding strategies and restricting virus spread.Background Production of cassava (Manihot esculenta Crantz), a food security crop in sub-Saharan Africa, is threatened by the spread of cassava brown streak disease (CBSD) which manifests in part as a corky necrosis in the storage root. It is caused by either of two virus species, Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), resulting in up to 100% yield loss in susceptible varieties. Methods This study characterized the response of 11 cassava varieties according to CBSD symptom expression and relative CBSV and UCBSV load in a field trial in Uganda. Relative viral load was measured using quantitative RT-PCR using COX as an internal housekeeping gene. Results A complex situation was revealed with indications of different resistance mechanisms that restrict virus accumulation and symptom expression. Four response categories were defined. Symptom expression was not always positively correlated with virus load. Substantially different levels of the virus species were found in many genotypes suggesting either resistance to one virus species or the other, or some form of interaction, antagonism or competition between virus species. Conclusions A substantial amount of research still needs to be undertaken to fully understand the mechanism and genetic bases of resistance. This information will be useful in informing breeding strategies and restricting virus spread.Background Production of cassava (Manihot esculenta Crantz), a food security crop in sub-Saharan Africa, is threatened by the spread of cassava brown streak disease (CBSD) which manifests in part as a corky necrosis in the storage root. It is caused by either of two virus species, Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), resulting in up to 100% yield loss in susceptible varieties. Methods This study characterized the response of 11 cassava varieties according to CBSD symptom expression and relative CBSV and UCBSV load in a field trial in Uganda. Relative viral load was measured using quantitative RT-PCR using COX as an internal housekeeping gene. Results A complex situation was revealed with indications of different resistance mechanisms that restrict virus accumulation and symptom expression. Four response categories were defined. Symptom expression was not always positively correlated with virus load. Substantially different levels of the virus species were found in many genotypes suggesting either resistance to one virus species or the other, or some form of interaction, antagonism or competition between virus species. Conclusions A substantial amount of research still needs to be undertaken to fully understand the mechanism and genetic bases of resistance. This information will be useful in informing breeding strategies and restricting virus spread.Background Production of cassava (Manihot esculenta Crantz), a food security crop in sub-Saharan Africa, is threatened by the spread of cassava brown streak disease (CBSD) which manifests in part as a corky necrosis in the storage root. It is caused by either of two virus species, Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), resulting in up to 100% yield loss in susceptible varieties. Methods This study characterized the response of 11 cassava varieties according to CBSD symptom expression and relative CBSV and UCBSV load in a field trial in Uganda. Relative viral load was measured using quantitative RT-PCR using COX as an internal housekeeping gene. Results A complex situation was revealed with indications of different resistance mechanisms that restrict virus accumulation and symptom expression. Four response categories were defined. Symptom expression was not always positively correlated with virus load. Substantially different levels of the virus species were found in many genotypes suggesting either resistance to one virus species or the other, or some form of interaction, antagonism or competition between virus species. Conclusions A substantial amount of research still needs to be undertaken to fully understand the mechanism and genetic bases of resistance. This information will be useful in informing breeding strategies and restricting virus spread

    Identification of F1 cassava (Manihot esculenta Crantz) progeny using microsatellite markers and capillary electrophoresis

    Get PDF
    Generation of genetic diversity is necessary in improving on the potential of cassava when faced with various biotic and abiotic challenges. Presently, cassava breeders are breeding for a number of traits, such as drought tolerance, early root bulking, yield, starch, beta-carotene, protein, dry matter, pest and disease resistance, by relying on genetic diversity that exists in manihot esculenta germplasm. Controlled pollination is one of the main methods used to generate genetic diversity in cassava. However, the process of controlled pollination especially in an open field is prone to contamination by illegitimate pollen right from the time of pollination, seed collection, nursery bed establishment to planting of the trials. Therefore, authentication of the progeny obtained from cas-sava crosses is very important for genetic studies. Twelve informative microsatellite markers were used to verify the authenticity of 364 F1 progeny thought to come from four controlled parental crosses. The transmission of each allele at nine microsatellite loci was tracked from parents to progeny in each of the four Namikonga-derived F1 cassava families. Out of the 364 F1 progeny, 317 (87.1%) were true-to-type, 44 (12.1%) were a product of self-pollination and 3 (0.8%) were a product of open pollination. The consistency of the results obtained using microsatellite markers makes this technique a reliable tool for assessing the purity of progeny generated from cassava crosses
    corecore