212 research outputs found

    The sequential trauma score - a new instrument for the sequential mortality prediction in major trauma*

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are several well established scores for the assessment of the prognosis of major trauma patients that all have in common that they can be calculated at the earliest during intensive care unit stay. We intended to develop a sequential trauma score (STS) that allows prognosis at several early stages based on the information that is available at a particular time.</p> <p>Study design</p> <p>In a retrospective, multicenter study using data derived from the Trauma Registry of the German Trauma Society (2002-2006), we identified the most relevant prognostic factors from the patients basic data (P), prehospital phase (A), early (B1), and late (B2) trauma room phase. Univariate and logistic regression models as well as score quality criteria and the explanatory power have been calculated.</p> <p>Results</p> <p>A total of 2,354 patients with complete data were identified. From the patients basic data (P), logistic regression showed that age was a significant predictor of survival (AUC<sub>model p</sub>, area under the curve = 0.63). Logistic regression of the prehospital data (A) showed that blood pressure, pulse rate, Glasgow coma scale (GCS), and anisocoria were significant predictors (AUC<sub>model A </sub>= 0.76; AUC<sub>model P + A </sub>= 0.82). Logistic regression of the early trauma room phase (B1) showed that peripheral oxygen saturation, GCS, anisocoria, base excess, and thromboplastin time to be significant predictors of survival (AUC<sub>model B1 </sub>= 0.78; AUC<sub>model P +A + B1 </sub>= 0.85). Multivariate analysis of the late trauma room phase (B2) detected cardiac massage, abbreviated injury score (AIS) of the head ≥ 3, the maximum AIS, the need for transfusion or massive blood transfusion, to be the most important predictors (AUCmodel B2 = 0.84; AUCfinal model P + A + B1 + B2 = 0.90). The explanatory power - a tool for the assessment of the relative impact of each segment to mortality - is 25% for P, 7% for A, 17% for B1 and 51% for B2. A spreadsheet for the easy calculation of the sequential trauma score is available at: <url>http://www.sequential-trauma-score.com</url></p> <p>Conclusions</p> <p>This score is the first sequential, dynamic score to provide a prognosis for patients with blunt major trauma at several points in time. With every additional piece of information the precision increases. The medical team has a simple, useful tool to identify patients at high risk and to predict the prognosis of an individual patient with major trauma very early, quickly and precisely.</p

    Concentration Kinetics of Serum MMP-9 and TIMP-1 after Blunt Multiple Injuries in the Early Posttraumatic Period

    Get PDF
    Metalloproteinases are secreted in response to a variety of inflammatory mediators and inhibited by tissue inhibitors of matrixmetalloproteinases (TIMPs). Two members of these families, MMP-9 and TIMP-1, were differentially expressed depending on clinical parameters in a previous genomewide mRNA analysis. The aim of this paper was now to evaluate the posttraumatic serum levels and the time course of both proteins depending on distinct clinical parameters. 60 multiple traumatized patients (ISS > 16) were included. Blood samples were drawn on admission and 6 h, 12 h, 24 h, 48 h, and 72 h after trauma. Serum levels were quantified by ELISA. MMP-9 levels significantly decreased in the early posttraumatic period (P < 0.05) whereas TIMP-1 levels significantly increased in all patients (P < 0.05). MMP-9 and TIMP-1 serum concentration kinetics became manifest in an inversely proportional balance. Furthermore, MMP-9 presented a stronger decrease in patients with severe trauma and non-survivors in contrast to minor traumatized patients (ISS ≤ 33) and survivors, initially after trauma

    Quantum stereodynamics of Li + HF reactive collisions: The role of reactants polarization on the differential cross section

    Get PDF
    A complete quantum study for the state-to-state Li + HF(v,j,m) → LiF(v′,j′,Ω′) + H reactive collisions has been performed using a wave packet method, for different initial rotational states and helicity states of the reactants. The state-to-state differential cross section has been simulated, and the polarization of products extracted. It is found that the reactivity is enhanced for nearly collinear collisions, which produces a vibrational excitation of HF, needed to overcome the late barrier. It is also found that LiF(v′ = 0) products are preferentially forward scattered, while vibrationally excited LiF(v′ = 1 and 2) are backward scattered. These results are interpreted with a simple reaction mechanism, based on the late character and bent geometry of the transition state, originating from a covalent/ionic crossing, which consists of two steps: the arrival at the transition state and the dissociation. In the first step, in order to get to the saddle point some HF vibrational excitation is required, which favors head-on collisions and therefore low values of m. In the second step a fast dissociation of H atom takes place, which is explained by the ionic Li+F -H character of the bent transition state: the FH- is repulsive making that H depart rapidly leaving a highly rotating LiF molecule. For the higher energy analyzed, where resonances slightly contribute, the orientation and alignment of product rotational states, referred to as reactants frame (with the z-axis parallel to k), are approximately constant with the scattering angle. The alignment is close to -1, showing that j′ is perpendicular to k, while starting from initial states with well defined rotational orientation, as states with pure m values, the final rotational are also oriented. It is also found that when using products frame (with the z′-axis parallel to k′) the rotational alignment and orientation of products varies a lot with the scattering angle just because the z′ axis changes from being parallel to anti-parallel to k when varying from θ = 0 to π. © the Owner Societies 2011.This work has been supported by the Ministerio de Ciencia e Innovación, under grants CSD2009-00038 (programa CONSOLIDER-INGENIO 2010 entitled “Molecular Astrophysics: the Herschel and Alma era”), FIS2010-18132, CTQ2008-02578 and CTQ2007-62898, and by Comunidad Autónoma de Madrid (CAM) under Grant No. S-0505/MAT/0303.Peer Reviewe

    Impact of STAT/SOCS mRNA Expression Levels after Major Injury

    Get PDF
    Background. Fulminant changes in cytokine receptor signalling might provoke severe pathological alterations after multiple trauma. The aim of this study was to evaluate the posttraumatic imbalance of the innate immune system with a special focus on the STAT/SOCS family. Methods. 20 polytraumatized patients were included. Blood samples were drawn 0 h–72 h after trauma; mRNA expression profiles of IL-10, STAT 3, SOCS 1, and SOCS 3 were quantified by qPCR. Results. IL-10 mRNA expression increased significantly in the early posttraumatic period. STAT 3 mRNA expressions showed a significant maximum at 6 h after trauma. SOCS 1 levels significantly decreased 6 h–72 h after trauma. SOCS 3 levels were significantly higher in nonsurvivors 6 h after trauma. Conclusion. We present a serial, sequential investigation in human neutrophil granulocytes of major trauma patients evaluating mRNA expression profiles of IL-10, STAT 3, SOCS 1, and SOCS 3. Posttraumatically, immune disorder was accompanied by a significant increase of IL-10 and STAT 3 mRNA expression, whereas SOCS 1 mRNA levels decreased after injury. We could demonstrate that death after trauma was associated with higher SOCS 3 mRNA levels already at 6 h after trauma. To support our results, further investigations have to evaluate protein levels of STAT/SOCS family in terms of posttraumatic immune imbalance

    Resonance transition 795-nm rubidium laser using He buffer gas

    Full text link
    Abstract not provide
    corecore