406 research outputs found

    Muon Spin Relaxation Studies of Magnetic-Field-Induced Effects in High-TcT_{c} Superconductors

    Full text link
    Muon spin relaxation (μ\muSR) measurements in high transverse magnetic fields (c^\parallel \hat c) revealed strong field-induced quasi-static magnetism in the underdoped and Eu doped (La,Sr)2_{2}CuO4_{4} and La1.875_{1.875}Ba0.125_{0.125}CuO4_{4}, existing well above TcT_{c} and TNT_{N}. The susceptibility-counterpart of Cu spin polarization, derived from the muon spin relaxation rate, exhibits a divergent behavior towards T25T \sim 25 K. No field-induced magnetism was detected in overdoped La1.81_{1.81}Sr0.19_{0.19}CuO4_{4}, optimally doped Bi2212, and Zn-doped YBa2_{2}Cu3_{3}O7_{7}.Comment: 4 pages, 4 color figure

    Low temperature x-ray diffraction study on superconductivity

    Get PDF
    金沢大学理工研究域Using a low temperature x-ray diffractometer, we studied superconductivity materials, optimally doped and underdoped YBCOs and PrOs4Sb 12 between 0.1 K and 300 K. At several temperatures, whole profiles of the x-ray reflection peak were measured and refined by Rietveld analysis. By Rietveld analysis, we found that Pr atoms in PrOs4Sb12 are still oscillating at an amplitude of about 0.1 A at 0.18 K. For some reflection planes, x-ray diffraction measurement with a small step size and a long stepping time was performed to accumulate more counts at certain temperatures. The lattice constant d of optimally doped YBCO (OPT YBCO) shows anomalous behaviours at around the superconductivity transition temperature Tc and around spin gap temperature T*. In OPT YBCO, the intensity of the reflection spectrum shows a clear anomaly at around Tc. © 2009 IOP Publishing Ltd

    Multifaceted asymmetric radiation from the edge-like asymmetric radiative collapse of density limited plasmas in the Large Helical Device

    Get PDF
    Neutral beam injection heated discharges at the density limit in the Large Helical Device [O. Motojima, H. Yamada, A. Komori et al., Phys. Plasmas 6, 1843 (1999)] are terminated with asymmetric radiative collapse (ARC) exhibiting several properties in common with the MARFE (multifaceted asymmetric radiation from the edge) phenomenon: (1) A highly poloidally asymmetric radiation profile which is stronger on the inboard side. (2) This asymmetry is well correlated with the signal from the multichord interferometer. (3) Moreover, evidence from several diagnostics at different toroidal locations supports the possibility that ARC may be toroidally symmetric. However in contrast to MARFE, ARC is only observed in the period just prior to the quench of the plasma

    Measuring Slepton Masses and Mixings at the LHC

    Get PDF
    Flavor physics may help us understand theories beyond the standard model. In the context of supersymmetry, if we can measure the masses and mixings of sleptons and squarks, we may learn something about supersymmetry and supersymmetry breaking. Here we consider a hybrid gauge-gravity supersymmetric model in which the observed masses and mixings of the standard model leptons are explained by a U(1) x U(1) flavor symmetry. In the supersymmetric sector, the charged sleptons have reasonably large flavor mixings, and the lightest is metastable. As a result, supersymmetric events are characterized not by missing energy, but by heavy metastable charged particles. Many supersymmetric events are therefore fully reconstructible, and we can reconstruct most of the charged sleptons by working up the long supersymmetric decay chains. We obtain promising results for both masses and mixings, and conclude that, given a favorable model, precise measurements at the LHC may help shed light not only on new physics, but also on the standard model flavor parameters.Comment: 24 pages; v2: fixed a typo in our computer program that led to some miscalculated branching ratios, various clarifications and minor improvements, conclusions unchanged, published versio

    Extension and its characteristics of ECRH plasma in the LHD

    Full text link
    One of the main objectives of the LHD is to extend the plasma confinement database for helical systems and to demonstrate such extended plasma confinement properties to be sustained in steady state. Among the various plasma parameter regimes, the study of confinement properties in the collisionless regime is of particular importance. Electron cyclotron resonance heating (ECRH) has been extensively used for these confinement studies of the LHD plasma from the initial operation. The system optimizations including the modification of the transmission and antenna system are performed with the special emphasis on the local heating properties. As the result, central electron temperature of more than 10 keV with the electron density of 0.6 x 1019^{19} m3^{-3} is achieved near the magnetic axis. The electron temperature profile is characterized by a steep gradient similar to those of an internal transport barrier observed in tokamaks and stellarators. 168 GHz ECRH system demonstrated efficient heating at over the density more than 1.0 x 1020^{20} m3^{-3}. CW ECRH system is successfully operated to sustain 756 s discharge.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France

    Observation of an impurity hole in a plasma with an ion internal transport barrier in the Large Helical Device

    Get PDF
    Extremely hollow profiles of impurities (denoted as “impurity hole”) are observed in the plasma with a steep gradient of the ion temperature after the formation of an internal transport barrier (ITB) in the ion temperature transport in the Large Helical Device [A. Iiyoshi et al., Nucl. Fusion 39, 1245 (1999)]. The radial profile of carbon becomes hollow during the ITB phase and the central carbon density keeps dropping and reaches 0.1%?0.3% of plasma density at the end of the ion ITB phase. The diffusion coefficient and the convective velocity of impurities are evaluated from the time evolution of carbon profiles assuming the diffusion and the convection velocity are constant in time after the formation of the ITB. The transport analysis gives a low diffusion of 0.1?0.2 m2/s and the outward convection velocity of ~1 m/s at half of the minor radius, which is in contrast to the tendency in tokamak plasmas for the impurity density to increase due to an inward convection and low diffusion in the ITB region. The outward convection is considered to be driven by turbulence because the sign of the convection velocity contradicts the neoclassical theory where a negative electric field and an inward convection are predicted

    マイクロ フォーカス エックスセン シーティー ヲ モチイタ シカン ホテツ ソウチ ノ サンジゲンテキ テキゴウ ヒョウカホウ ノ カイハツ

    Get PDF
    Reversed-shear Alfv?n eigenmodes were observed for the first time in a helical plasma having negative q0′′ (the curvature of the safety factor q at the zero shear layer). The frequency is swept downward and upward sequentially via the time variation in the maximum of q. The eigenmodes calculated by ideal MHD theory are consistent with the experimental data. The frequency sweeping is mainly determined by the effects of energetic ions and the bulk pressure gradient. Coupling of reversed-shear Alfv?n eigenmodes with energetic ion driven geodesic acoustic modes generates a multitude of frequency-sweeping modes
    corecore