3,103 research outputs found

    Magnetic-Field-Induced Mott Transition in a Quasi-Two-Dimensional Organic Conductor

    Full text link
    We investigated the effect of magnetic field on the highly correlated metal near the Mott transition in the quasi-two-dimensional layered organic conductor, κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Cl, by the resistance measurements under control of temperature, pressure, and magnetic field. It was demonstrated that the marginal metallic phase near the Mott transition is susceptible to the field-induced localization transition of the first order, as was predicted theoretically. The thermodynamic consideration of the present results gives a conceptual pressure-field phase diagram of the Mott transition at low temperatures.Comment: 4 pages, 4 figure

    Analysis of dynamic characteristics of fluid force induced by labyrinth seal

    Get PDF
    Flow patterns of the labyrinth seal are experimentally investigated for making a mathematical model of labyrinth seal and to obtain the flow induced force of the seal. First, the flow patterns in the labyrinth chamber are studied on the circumferential flow using bubble and on the cross section of the seal chamber using aluminum powder as tracers. And next, the fluid force and its phase angle are obtained from the measured pressure distribution in the chamber and the fluid force coefficients are derived from the fluid force and the phase angle. Those are similar to the expression of oil film coefficients. As a result, it is found that the vortices exist in the labyrinth chambers and its center moves up and down periodically. The pressure drop is biggest in the first stage of chambers and next in the last stage of chambers

    Possibility of Macroscopic resonant Tunneling near the Superconductor- Insulator Transition in YBaCuO Thin Films

    Full text link
    Experimental results of I-V characteristics near the superconductor-insulator transition observed for disorder-tuned YBaCuO thinfilms are presented. The I-V characteristics exibit new quasiperiodic structures as a function of the current. The current interval, the number of the dI/dV peaks, and the magnetic field dependence of the peaks are consistent with the theoretical predictions of the resonant tunneling of a phase particle ina tilted-cosine potential for asingle Josephson junction with small capacitance.Comment: 7 pages, 4 figures, in press (Europhys. Lett.

    Electrical magnetochiral effect induced by chiral spin fluctuations

    Full text link
    Chirality of matter can produce unique responses in optics, electricity and magnetism. In particular, magnetic crystals transmit their handedness to the magnetism via antisymmetric exchange interaction of relativistic origin, producing helical spin orders as well as their fluctuations. Here we report for a chiral magnet MnSi that chiral spin fluctuations manifest themselves in the electrical magnetochiral effect (eMChE), i.e. the nonreciprocal and nonlinear response characterized by the electrical conductance depending on inner product of electric and magnetic fields EB\boldsymbol{E} \cdot \boldsymbol{B}. Prominent eMChE signals emerge at specific temperature-magnetic field-pressure regions: in the paramagnetic phase just above the helical ordering temperature and in the partially-ordered topological spin state at low temperatures and high pressures, where thermal and quantum spin fluctuations are conspicuous in proximity of classical and quantum phase transitions, respectively. The finding of the asymmetric electron scattering by chiral spin fluctuations may explore new electromagnetic functionality in chiral magnets.Comment: 25 pages, 9 figures (including Supplementary Information

    On the basic mechanism of Pixelized Photon Detectors

    Full text link
    A Pixelized Photon Detector (PPD) is a generic name for the semiconductor devices operated in the Geiger-mode, such as Silicon PhotoMultiplier and Multi-Pixel Photon Counter, which has high photon counting capability. While the internal mechanisms of the PPD have been intensively studied in recent years, the existing models do not include the avalanche process. We have simulated the multiplication and quenching of the avalanche process and have succeeded in reproducing the output waveform of the PPD. Furthermore our model predicts the existence of dead-time in the PPD which has never been numerically predicted. For serching the dead-time, we also have developed waveform analysis method using deconvolution which has the potential to distinguish neibouring pulses precisely. In this paper, we discuss our improved model and waveform analysis method.Comment: 4pages, 5figures, To appear in the proceedings of 5th International Conference on New Developments in Photodetection (NDIP08), Aix-les-Bains, France, 15-20 Jun 200

    Pressure effects on the superconducting properties of YBa_2Cu_4O_8

    Full text link
    Measurements of the magnetization under high hydrostatic pressure (up to 10.2 kbar) in YBa_2Cu_4O_8 were carried out. From the scaling analysis of the magnetization data the pressure induced shifts of the transition temperature T_c, the volume V and the anisotropy \gamma have been obtained. It was shown that the pressure induced relative shift of T_c mirrors essentially that of the anisotropy. This observation uncovers a novel generic property of anisotropic type II superconductors, that inexistent in the isotropic case.Comment: 4 pages, 3 figure

    Dynamics of Multiferroic Domain Wall in Spin-Cycloidal Ferroelectric DyMnO3_{3}

    Full text link
    We report the dielectric dispersion of the giant magnetocapacitance (GMC) in multiferroic DyMnO3_{3} over a wide frequency range. The GMC is found to be attributable not to the softened electromagnon but to the electric-field-driven motion of multiferroic domain wall (DW). In contrast to conventional ferroelectric DWs, the present multiferroic DW motion holds extremely high relaxation rate of \sim10710^{7} s1^{-1} even at low temperatures. This mobile nature as well as the model simulation suggests that the multiferroic DW is not atomically thin as in ferroelectrics but thick, reflecting its magnetic origin.Comment: 4 pages, 4 figure
    corecore