437 research outputs found

    The Influence of Ingate Size on the Lost Foam Casting Process

    Get PDF
    The article presents analysis of the influence of ingate size on the Lost Foam casting process. In particular, analysis of simulation tests has been carried out to determine the ingate size influence on the rate of filling of the mould cavity, pressure in the gas gap and size of the gas gap. A specially prepared mathematical model of the process and an original calculation algorithm were used in simulation tests of full-mould casting. The tests have indicated that the increase of the ingate size results in the increase of filling rate and increase of pressure of gases in the gas gap. However, significant influence on mould cavity filling occurs only when the ingate size is less than ~1 cm2

    Optimization of Master Alloy Amount and Gating System Design for Ductile Cast Iron Obtain in Lost Foam Process

    Get PDF
    The paper presents the optimization of master alloy amount for the high nodular graphite yield (80-90%) in cast iron obtain in lost foam process. The influence of the gating system configuration and the shape of the reaction chamber, the degree of spheroidisation cast iron was examined. Research has shown that the, optimal of master alloy amount of 1.5% by mass on casting iron. The degree of spheroidisation is also influenced by the gating system configuration. The best spheroidisation effect was obtained for liquid cast iron was fed into the reaction chamber from the bottom and discharged from the top

    Influence of time and pressure of forming a pattern on mechanical properties

    Get PDF
    In this paper, the technology of forming patterns on a research station equipped with an autoclave A-600 of Polish company GROM is presented. This study was conducted to determine the influence of pressure and time of forming a pattern on the bending strength. Analysis of the results confirmed that bending strength increases with increasing the pressure. The time of forming a pattern has a similar effect

    Magnetic and transport properties of rare-earth-based half-Heusler phases RPdBi: prospective systems for topological quantum phenomena

    Full text link
    RPdBi (R = Er, Ho, Gd, Dy, Y, Nd) compounds were studied by means of x-ray diffraction, magnetic susceptibility, electrical resistivity, magnetoresistivity, thermoelectric power and Hall effect measurements, performed in the temperature range 1.5-300 K and in magnetic fields up to 12 T. These ternaries, except diamagnetic YPdBi, exhibit localized magnetism of R3+R^{3+} ions, and order antiferromagnetically at low temperatures (TNT_{N} = 2-13 K). The transport measurements revealed behavior characteristic of semimetals or narrow-band semiconductors. Both, electrons and holes contribute to the conductivity with dominant role of p-type carriers. The Hall effect of ErPdBi is strongly temperature and magnetic field dependent, reflecting complex character of the underlying electronic structures with multiple electron and hole bands. RPdBi, and especially DyPdBi, exhibit very good thermoelectric properties with a power factor coefficient PFPF ranging from 6 to 20 μ\muWcm−1^{-1}K−2^{-2}.Comment: 6 pages, 5 figures; Accepted to Physical Review B (June 17, 2011

    Giant crystal-electric-field effect and complex magnetic behavior in single-crystalline CeRh3Si2

    Full text link
    Single-crystalline CeRh3Si2 was investigated by means of x-ray diffraction, magnetic susceptibility, magnetization, electrical resistivity, and specific heat measurements carried out in wide temperature and magnetic field ranges. Moreover, the electronic structure of the compound was studied at room temperature by cerium core-level x-ray photoemission spectroscopy (XPS). The physical properties were analyzed in terms of crystalline electric field and compared with results of ab-initio band structure calculations performed within the density functional theory approach. The compound was found to crystallize in the orthorhombic unit cell of the ErRh3Si2 type (space group Imma -- No.74, Pearson symbol: oI24) with the lattice parameters: a = 7.1330(14) A, b = 9.7340(19) A, and c = 5.6040(11) A. Analysis of the magnetic and XPS data revealed the presence of well localized magnetic moments of trivalent cerium ions. All physical properties were found to be highly anisotropic over the whole temperature range studied, and influenced by exceptionally strong crystalline electric field with the overall splitting of the 4f1 ground multiplet exceeding 5700 K. Antiferromagnetic order of the cerium magnetic moments at TN = 4.70(1)K and their subsequent spin rearrangement at Tt = 4.48(1) K manifest themselves as distinct anomalies in the temperature characteristics of all investigated physical properties and exhibit complex evolution in an external magnetic field. A tentative magnetic B-T phase diagram, constructed for B parallel to the b-axis being the easy magnetization direction, shows very complex magnetic behavior of CeRh3Si2, similar to that recently reported for an isostructural compound CeIr3Si2. The electronic band structure calculations corroborated the antiferromagnetic ordering of the cerium magnetic moments and well reproduced the experimental XPS valence band spectrum.Comment: 32 pages, 12 figures, to appear in Physical Review
    • …
    corecore