7,477 research outputs found

    Alpha Clustering and the stellar nucleosynthesis of carbon

    Get PDF
    The astrophysical S--factor and reaction rates for the triple--alpha process are calculated in the direct--capture model. It is shown that the stellar carbon production is extremely sensitive to small variations in the N--N interaction.Comment: 2 pages LaTe

    Higher-order binding corrections to the Lamb shift of 2P states

    Get PDF
    We present an improved calculation of higher-order corrections to the one-loop self energy of 2P states in hydrogen-like systems with small nuclear charge Z. The method is based on a division of the integration with respect to the photon energy into a high- and a low-energy part. The high-energy part is calculated by an expansion of the electron propagator in powers of the Coulomb field. The low-energy part is simplified by the application of a Foldy-Wouthuysen transformation. This transformation leads to a clear separation of the leading contribution from the relativistic corrections and removes higher order terms. The method is applied to the 2P_{1/2} and 2P_{3/2} states in atomic hydrogen. The results lead to new theoretical values for the Lamb shifts and the fine structure splitting.Comment: 18 pages, LaTeX. In comparison to the journal version, it contains an added note (2000) which reflects the current status of Lamb shift calculation

    How important is the Family? : Alpha nuclear potentials and p-process nucleosynthesis

    Get PDF
    Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike LicenceIn this work we present the results from the analysis of the experimentally measured angular distributions of the reaction 106Cd(α , α )106 Cd at several different energies around the Coulomb barrier. The difficulties that arise in the study of 106Cd-α -nuclear potential and the so called Family Problem are addressed in this work

    Lamb Shift of 3P and 4P states and the determination of α\alpha

    Get PDF
    The fine structure interval of P states in hydrogenlike systems can be determined theoretically with high precision, because the energy levels of P states are only slightly influenced by the structure of the nucleus. Therefore a measurement of the fine structure may serve as an excellent test of QED in bound systems or alternatively as a means of determining the fine structure constant α\alpha with very high precision. In this paper an improved analytic calculation of higher-order binding corrections to the one-loop self energy of 3P and 4P states in hydrogen-like systems with low nuclear charge number ZZ is presented. A comparison of the analytic results to the extrapolated numerical data for high ZZ ions serves as an independent test of the analytic evaluation. New theoretical values for the Lamb shift of the P states and for the fine structure splittings are given.Comment: 33 pages, LaTeX, 4 tables, 4 figure

    Coordinate-space approach to the bound-electron self-energy: Self-Energy screening calculation

    Get PDF
    The self-energy screening correction is evaluated in a model in which the effect of the screening electron is represented as a first-order perturbation of the self energy by an effective potential. The effective potential is the Coulomb potential of the spherically averaged charge density of the screening electron. We evaluate the energy shift due to a 1s1/21s_{1/2}, 2s1/22s_{1/2}, 2p1/22p_{1/2}, or 2p3/22p_{3/2} electron screening a 1s1/21s_{1/2}, 2s1/22s_{1/2}, 2p1/22p_{1/2}, or 2p3/22p_{3/2} electron, for nuclear charge Z in the range 5≀Z≀925 \le Z\le 92. A detailed comparison with other calculations is made.Comment: 54 pages, 10 figures, 4 table

    Calculation of the Electron Self Energy for Low Nuclear Charge

    Get PDF
    We present a nonperturbative numerical evaluation of the one-photon electron self energy for hydrogenlike ions with low nuclear charge numbers Z=1 to 5. Our calculation for the 1S state has a numerical uncertainty of 0.8 Hz for hydrogen and 13 Hz for singly-ionized helium. Resummation and convergence acceleration techniques that reduce the computer time by about three orders of magnitude were employed in the calculation. The numerical results are compared to results based on known terms in the expansion of the self energy in powers of (Z alpha).Comment: 10 pages, RevTeX, 2 figure

    Investigation of alpha-nuclear potential families from elastic scattering experiments

    Get PDF
    In this work we present the continuation of the reported analysis [1] of the experimentally measured angular distributions of the reaction Cd-106(alpha, alpha)Cd-106 at several different energies around the Coulomb barrier. The difficulties that arise in the study of Cd-106-alpha-nuclear potential and the so called Family Problem are addressed

    Electron Self Energy for the K and L Shell at Low Nuclear Charge

    Get PDF
    A nonperturbative numerical evaluation of the one-photon electron self energy for the K- and L-shell states of hydrogenlike ions with nuclear charge numbers Z=1 to 5 is described. Our calculation for the 1S state has a numerical uncertainty of 0.8 Hz in atomic hydrogen, and for the L-shell states (2S and 2P) the numerical uncertainty is 1.0 Hz. The method of evaluation for the ground state and for the excited states is described in detail. The numerical results are compared to results based on known terms in the expansion of the self energy in powers of (Z alpha).Comment: 21 pages, RevTeX, 5 Tables, 6 figure

    alpha-nucleus potentials for the neutron-deficient p nuclei

    Full text link
    alpha-nucleus potentials are one important ingredient for the understanding of the nucleosynthesis of heavy neutron-deficient p nuclei in the astrophysical gamma-process where these p nuclei are produced by a series of (gamma,n), (gamma,p), and (gamma,alpha) reactions. I present an improved alpha-nucleus potential at the astrophysically relevant sub-Coulomb energies which is derived from the analysis of alpha decay data and from a previously established systematic behavior of double-folding potentials.Comment: 6 pages, 3 figures, accepted for publication in Phys. Rev.
    • 

    corecore