217 research outputs found

    High temperature susceptibility in electron doped Ca1-xYxMnO3: Double Exchange vs Superexchange

    Full text link
    We present a study of the magnetic properties of the electron doped manganites Ca1-xYxMnO3 (for 0<=x<=0.25) in the paramagnetic regime. For the less doped samples (x<=0.1) the magnetic susceptibility, c(T), follows a Curie-Weiss (CW) law only for T > 450 K and, below this temperature, c^-1(T) shows a ferrimagnetic-like curvature. We approached the discussion of these results in terms of a simple mean-field model where double exchange, approximated by a ferromagnetic Heisenberg-like interaction between Mn3+ and Mn4+ ions, competes with classical superexchange. For higher levels of doping (x>=0.15), the CW behaviour is observed down to the magnetic ordering temperature (Tmo) and a better description of c(T) was obtained by assuming full delocalization of the eg electrons. In order to explore the degree of delocalization as a function of T and x, we analyzed the problem through Montecarlo simulations. Within this picture we found that at high T the electrons doped are completely delocalized but, when Tmo is approached, they form magnetic polarons of large spin that cause the observed curvature in c^-1(T) for x<=0.1.Comment: 15 pages, 10 figures, Submitted to J. Physics: Condensed Matter (06/28/02

    The DNA-recognition mode shared by archaeal feast/famine-regulatory proteins revealed by the DNA-binding specificities of TvFL3, FL10, FL11 and Ss-LrpB

    Get PDF
    The DNA-binding mode of archaeal feast/famine-regulatory proteins (FFRPs), i.e. paralogs of the Esherichia coli leucine-responsive regulatory protein (Lrp), was studied. Using the method of systematic evolution of ligands by exponential enrichment (SELEX), optimal DNA duplexes for interacting with TvFL3, FL10, FL11 and Ss-LrpB were identified as TACGA[AAT/ATT]TCGTA, GTTCGA[AAT/ATT]TCGAAC, CCGAAA[AAT/ATT]TTTCGG and TTGCAA[AAT/ATT]TTGCAA, respectively, all fitting into the form abcdeWWWedcba. Here W is A or T, and e.g. a and a are bases complementary to each other. Apparent equilibrium binding constants of the FFRPs and various DNA duplexes were determined, thereby confirming the DNA-binding specificities of the FFRPs. It is likely that these FFRPs recognize DNA in essentially the same way, since their DNA-binding specificities were all explained by the same pattern of relationship between amino-acid positions and base positions to form chemical interactions. As predicted from this relationship, when Gly36 of TvFL3 was replaced by Thr, the b base in the optimal DNA duplex changed from A to T, and, when Thr36 of FL10 was replaced by Ser, the b base changed from T to G/A. DNA-binding characteristics of other archaeal FFRPs, Ptr1, Ptr2, Ss-Lrp and LysM, are also consistent with the relationship

    Sailing into a dilemma : an economic and legal analysis of an EU trading scheme for maritime emissions

    Full text link
    On the basis of a joint economic and legal analysis, we evaluate the effects of a “regional” (European) emission trading scheme aiming at reducing emissions of international shipping. The focus lies on the question which share of emissions from maritime transport activities to and from the EU can and should be included in such a system. Our findings suggest that the attempt to implement an EU maritime ETS runs into a dilemma. It is not possible to design a system that achieves emission reductions in a cost efficient manner and is compatible with international law

    Network Formation with Local Complements and Global Substitutes: The Case of R&D Networks

    Full text link
    corecore