308 research outputs found

    ASYMPTOTIC BEHAVIOR OF COMPLEX SCALAR FIELDS IN A FRIEDMAN-LEMAITRE UNIVERSE

    Full text link
    We study the coupled Einstein-Klein-Gordon equations for a complex scalar field with and without a quartic self-interaction in a curvatureless Friedman-Lema\^{\i}\-tre Universe. The equations can be written as a set of four coupled first order non-linear differential equations, for which we establish the phase portrait for the time evolution of the scalar field. To that purpose we find the singular points of the differential equations lying in the finite region and at infinity of the phase space and study the corresponding asymptotic behavior of the solutions. This knowledge is of relevance, since it provides the initial conditions which are needed to solve numerically the differential equations. For some singular points lying at infinity we recover the expected emergence of an inflationary stage.Comment: uuencoded, compressed tarfile containing a 15 pages Latex file and 2 postscipt figures. Accepted for publication on Phys. Rev.

    On Gravitational Waves in Spacetimes with a Nonvanishing Cosmological Constant

    Full text link
    We study the effect of a cosmological constant Λ\Lambda on the propagation and detection of gravitational waves. To this purpose we investigate the linearised Einstein's equations with terms up to linear order in Λ\Lambda in a de Sitter and an anti-de Sitter background spacetime. In this framework the cosmological term does not induce changes in the polarization states of the waves, whereas the amplitude gets modified with terms depending on Λ\Lambda. Moreover, if a source emits a periodic waveform, its periodicity as measured by a distant observer gets modified. These effects are, however, extremely tiny and thus well below the detectability by some twenty orders of magnitude within present gravitational wave detectors such as LIGO or future planned ones such as LISA.Comment: 8 pages, 4 figures, accepted for publication in Physical Review

    Numerical evidence for `multi-scalar stars'

    Get PDF
    We present a class of general relativistic soliton-like solutions composed of multiple minimally coupled, massive, real scalar fields which interact only through the gravitational field. We describe a two-parameter family of solutions we call ``phase-shifted boson stars'' (parameterized by central density rho_0 and phase delta), which are obtained by solving the ordinary differential equations associated with boson stars and then altering the phase between the real and imaginary parts of the field. These solutions are similar to boson stars as well as the oscillating soliton stars found by Seidel and Suen [E. Seidel and W.M. Suen, Phys. Rev. Lett. 66, 1659 (1991)]; in particular, long-time numerical evolutions suggest that phase-shifted boson stars are stable. Our results indicate that scalar soliton-like solutions are perhaps more generic than has been previously thought.Comment: Revtex. 4 pages with 4 figures. Submitted to Phys. Rev.

    What measurable zero point fluctuations can(not) tell us about dark energy

    Get PDF
    We show that laboratory experiments cannot measure the absolute value of dark energy. All known experiments rely on electromagnetic interactions. They are thus insensitive to particles and fields that interact only weakly with ordinary matter. In addition, Josephson junction experiments only measure differences in vacuum energy similar to Casimir force measurements. Gravity, however, couples to the absolute value. Finally we note that Casimir force measurements have tested zero point fluctuations up to energies of ~10 eV, well above the dark energy scale of ~0.01 eV. Hence, the proposed cut-off in the fluctuation spectrum is ruled out experimentally.Comment: 4 page

    Spontaneous Scalarization and Boson Stars

    Get PDF
    We study spontaneous scalarization in Scalar-Tensor boson stars. We find that scalarization does not occur in stars whose bosons have no self-interaction. We introduce a quartic self-interaction term into the boson Lagrangian and show that when this term is large, scalarization does occur. Strong self-interaction leads to a large value of the compactness (or sensitivity) of the boson star, a necessary condition for scalarization to occur, and we derive an analytical expression for computing the sensitivity of a boson star in Brans-Dicke theory from its mass and particle number. Next we comment on how one can use the sensitivity of a star in any Scalar-Tensor theory to determine how its mass changes when it undergoes gravitational evolution. Finally, in the Appendix, we derive the most general form of the boson wavefunction that minimises the energy of the star when the bosons carry a U(1) charge.Comment: 23 pages, 5 postscript figures. Typing errors corrected. Includes some new text that relates the paper to several previous results. Accepted for publication in PR

    Neutron Stars in a Varying Speed of Light Theory

    Full text link
    We study neutron stars in a varying speed of light (VSL) theory of gravity in which the local speed of light depends upon the value of a scalar field ϕ\phi. We find that the masses and radii of the stars are strongly dependent on the strength of the coupling between ϕ\phi and the matter field and that for certain choices of coupling parameters, the maximum neutron star mass can be arbitrarily small. We also discuss the phenomenon of cosmological evolution of VSL stars (analogous to the gravitational evolution in scalar-tensor theories) and we derive a relation showing how the fractional change in the energy of a star is related to the change in the cosmological value of the scalar field.Comment: 15 pages, 2 figures. Added solutions with a more realistic equation of state. To be published in PR

    Charged Scalar-Tensor Boson Stars: Equilibrium, Stability and Evolution

    Get PDF
    We study charged boson stars in scalar-tensor (ST) gravitational theories. We analyse the weak field limit of the solutions and analytically show that there is a maximum charge to mass ratio for the bosons above which the weak field solutions are not stable. This charge limit can be greater than the GR limit for a wide class of ST theories. We numerically investigate strong field solutions in both the Brans Dicke and power law ST theories. We find that the charge limit decreases with increasing central boson density. We discuss the gravitational evolution of charged and uncharged boson stars in a cosmological setting and show how, at any point in its evolution, the physical properties of the star may be calculated by a rescaling of a solution whose asymptotic value of the scalar field is equal to its initial asymptotic value. We focus on evolution in which the particle number of the star is conserved and we find that the energy and central density of the star decreases as the cosmological time increases. We also analyse the appearance of the scalarization phenomenon recently discovered for neutron stars configurations and, finally, we give a short discussion on how making the correct choice of mass influences the argument over which conformal frame, the Einstein frame or the Jordan frame, is physical.Comment: RevTeX, 27 pages, 9 postscript figures. Minor revisions and updated references. Accepted for publication in Phys. Rev.

    Critical Velocity in 3He-B Vibrating Wire Experiments as Analog of Vacuum Instability in a Slowly Oscillating Electric Field

    Full text link
    The Lancaster experiments with a cylindrical wire moving in superfluid 3He-B are discussed, where the measured critical velocity of pair creation is much below the Landau critical velocity. The phenomenon is shown to be analogous to the instability of the electron-positron vacuum in an adiabatically alternating strong electric potential of both signs, where the positive- and negative-root levels cross and thus the instability treshold is twice less than in the conventional case of a single static potential well.Comment: RevTex file, 6 pages, 4 figure

    On a class of stable, traversable Lorentzian wormholes in classical general relativity

    Get PDF
    It is known that Lorentzian wormholes must be threaded by matter that violates the null energy condition. We phenomenologically characterize such exotic matter by a general class of microscopic scalar field Lagrangians and formulate the necessary conditions that the existence of Lorentzian wormholes imposes on them. Under rather general assumptions, these conditions turn out to be strongly restrictive. The most simple Lagrangian that satisfies all of them describes a minimally coupled massless scalar field with a reversed sign kinetic term. Exact, non-singular, spherically symmetric solutions of Einstein's equations sourced by such a field indeed describe traversable wormhole geometries. These wormholes are characterized by two parameters: their mass and charge. Among them, the zero mass ones are particularly simple, allowing us to analytically prove their stability under arbitrary space-time dependent perturbations. We extend our arguments to non-zero mass solutions and conclude that at least a non-zero measure set of these solutions is stable.Comment: 23 pages, 4 figures, uses RevTeX4. v2: Changes to accommodate added references. Statement about masses of the wormhole correcte

    Are the singularities stable?

    Full text link
    The spacetime singularities play a useful role in gravitational theories by distinguishing physical solutions from non-physical ones. The problem, we studying in this paper is: are these singularities stable? To answer this question, we have analyzed the general problem of stability of the family of the static spherically symmetric solutions of the standard Einstein-Maxwell model coupled to an extra free massless scalar field. We have obtained the equations for the axial and polar perturbations. The stability against axial perturbations has been proven.Comment: 13 pages, LaTeX, no figure
    corecore