42 research outputs found

    Effects of Stem Cell Factor on Hypoxia-Inducible Factor 1 Alpha Accumulation in Human Acute Myeloid Leukaemia and LAD2 Mast Cells

    Get PDF
    Stem cell factor (SCF) is a hematopoietic growth factor that exerts its activity by signalling through the tyrosine kinase receptor known as Kit or CD117. SCF-Kit signalling is crucial for the survival, proliferation and differentiation of hematopoietic cells of myeloid lineage. Furthermore, since myeloid leukaemia cells express the Kit receptor, SCF may play an important role in myeloid leukaemia progression too. However, the mechanisms of this pathophysiological effect remain unclear. Recent evidence shows that SCF triggers accumulation of the inducible alpha subunit of hypoxia-inducible factor 1 (HIF-1) in hematopoietic cells—a transcription complex that plays a pivotal role in cellular adaptation to low oxygen availability. However, it is unknown how SCF impacts on HIF-1α accumulation in human myeloid leukaemia and mast cells. Here we show that SCF induces HIF-1α accumulation in THP-1 human myeloid leukaemia cells but not in LAD2 mast cells. We demonstrated that LAD2 cells have a more robust glutathione (GSH)-dependent antioxidative system compared to THP-1 cells and are therefore protected against the actions of ROS generated in an SCF-dependent manner. BSO-induced GSH depletion led to a significant decrease in HIF-1α prolyl hydroxylase (PHD) activity in THP-1 cells and to near attenuation of it in LAD2 cells. In THP-1 cells, SCF-induced HIF-1α accumulation is controlled via ERK, PI3 kinase/PKC-δ/mTOR-dependent and to a certain extent by redox-dependent mechanisms. These results demonstrate for the first time an important cross-talk of signalling pathways associated with HIF-1 activation—an important stage of the myeloid leukaemia cell life cycle

    Association between KCNJ6 (GIRK2) Gene Polymorphisms and Postoperative Analgesic Requirements after Major Abdominal Surgery

    Get PDF
    Opioids are commonly used as effective analgesics for the treatment of acute and chronic pain. However, considerable individual differences have been widely observed in sensitivity to opioid analgesics. We focused on a G-protein-activated inwardly rectifying potassium (GIRK) channel subunit, GIRK2, that is an important molecule in opioid transmission. In our initial polymorphism search, a total of nine single-nucleotide polymorphisms (SNPs) were identified in the whole exon, 5′-flanking, and exon-intron boundary regions of the KCNJ6 gene encoding GIRK2. Among them, G-1250A and A1032G were selected as representative SNPs for further association studies. In an association study of 129 subjects who underwent major open abdominal surgery, the A/A genotype in the A1032G SNP and -1250G/1032A haplotype were significantly associated with increased postoperative analgesic requirements compared with other genotypes and haplotypes. The total dose (mean±SEM) of rescue analgesics converted to equivalent oral morphine doses was 20.45±9.27 mg, 10.84±2.24 mg, and 13.07±2.39 mg for the A/A, A/G, and G/G genotypes in the A1032G SNP, respectively. Additionally, KCNJ6 gene expression levels in the 1032A/A subjects were significantly decreased compared with the 1032A/G and 1032G/G subjects in a real-time quantitative PCR analysis using human brain tissues, suggesting that the 1032A/A subjects required more analgesics because of lower KCNJ6 gene expression levels and consequently insufficient analgesic effects. The results indicate that the A1032G SNP and G-1250A/A1032G haplotype could serve as markers that predict increased analgesic requirements. Our findings will provide valuable information for achieving satisfactory pain control and open new avenues for personalized pain treatment

    Association study of the KCNJ3 gene as a susceptibility candidate for schizophrenia in the Chinese population

    Get PDF
    We recently reported the results of a genome-wide association study (GWAS) of schizophrenia in the Japanese population. In that study, a single nucleotide polymorphism (SNP) (rs3106653) in the KCNJ3 (potassium inwardly rectifying channel, subfamily J, member 3) gene located at 2q24.1 showed association with schizophrenia in two independent sample sets. KCNJ3, also termed GIRK1 or Kir3.1, is a member of the G protein-activated inwardly rectifying K+ channel (GIRK) group. GIRKs are widely distributed in the brain and play an important role in regulating neural excitability through the activation of various G protein-coupled receptors. In this study, we set out to examine this association using a different population. We first performed a gene-centric association study of the KCNJ3 gene, by genotyping 38 tagSNPs in the Chinese population. We detected nine SNPs that displayed significant association with schizophrenia (lowest P = 0.0016 for rs3106658, Global significance = 0.036). The initial marker SNP (rs3106653) examined in our prior GWAS in the Japanese population also showed nominally significant association in the Chinese population (P = 0.028). Next, we analyzed transcript levels in the dorsolateral prefrontal cortex of postmortem brains from patients with schizophrenia and bipolar disorder and from healthy controls, using real-time quantitative RT-PCR. We found significantly lower KCNJ3 expression in postmortem brains from schizophrenic and bipolar patients compared with controls. These data suggest that the KCNJ3 gene is genetically associated with schizophrenia in Asian populations and add further evidence to the “channelopathy theory of psychiatric illnesses”

    Shiga Toxin-Mediated Hemolytic Uremic Syndrome: Time to Change the Diagnostic Paradigm?

    Get PDF
    Hemolytic uremic syndrome (HUS) is caused by enterohemorrhagic Escherichia coli (EHEC) which possess genes encoding Shiga toxin (stx), the major virulence factor, and adhesin intimin (eae). However, the frequency of stx-negative/eae-positive E. coli in stools of HUS patients and the clinical significance of such strains are unknown.Between 1996 and 2006, we sought stx-negative/eae-positive E. coli in stools of HUS patients using colony blot hybridization with the eae probe and compared the isolates to EHEC causing HUS. stx-negative/eae-positive E. coli were isolated as the only pathogens from stools of 43 (5.5%) of 787 HUS patients; additional 440 (55.9%) patients excreted EHEC. The majority (90.7%) of the stx-negative/eae-positive isolates belonged to serotypes O26:H11/NM (nonmotile), O103:H2/NM, O145:H28/NM, and O157:H7/NM, which were also the most frequent serotypes identified among EHEC. The stx-negative isolates shared non-stx virulence and fitness genes with EHEC of the corresponding serotypes and clustered with them into the same clonal complexes in multilocus sequence typing, demonstrating their close relatedness to EHEC.At the time of microbiological analysis, approximately 5% of HUS patients shed no longer the causative EHEC, but do excrete stx-negative derivatives of EHEC that lost stx during infection. In such patients, the EHEC etiology of HUS is missed using current methods detecting solely stx or Shiga toxin; this can hamper epidemiological investigations and lead to inappropriate clinical management. While maintaining the paradigm that HUS is triggered by Shiga toxin, our data demonstrate the necessity of considering genetic changes of the pathogen during infection to adapt appropriately diagnostic strategies

    The Road to China

    No full text

    Desperate Postdocs in the Laboratory of the Damned

    No full text

    Embedded in the Front Lines of Genetics

    No full text

    Henrietta & HeLa: A Lady and her Legacy Reconnected

    No full text
    corecore