8 research outputs found

    Comparison of shear bond strength and microleakage of Scotchbond multi-purpose (MP) adhesive system and an experimental dentin bonding agent based on standard of ISOTR 11405

    No full text
    "nBackground and Aim: Evaluation of shear bond strength and microleakage of bonding agents is important as these properties play main roles in adhesion of composite to dental tissues. Microleakage results in bacterial penetration into dentin tubules and enamel surfaces and causes sensitivity and recurrent caries followed by destruction of composite filling. Insufficient shear bond strength results in early failure of filling in low masticatory forces. The main goal of this study was to compare the microleakage and shear bond strength of an experimental adhesive and Scotchbond multi-purpose (MP) adhesive system."nMaterials and Methods: In this experimental study, sixty extracted caries free human molar teeth were randomly assigned into 4 groups of 15 each for shear bond strength. Variables were bonding agents, enamel and dentin. Twenty teeth assigned into 2 groups of 10 each were used for valuation of the microleakage. Microleakage and shear bond strength were performed according to ISO TR 11405. All data were analyzed with parametric and non-parametric tests according to their normality distribution. Also, Weibull distribution performed on data."nResults: Data obtained from both microleakage and shear bond strength tests showed no significant difference between the experimental bonding and Scotchbond MP bonding (P>0.05). Furthermore, there was no significant difference between the microleakage of occlusal and gingival parts of both bondings (P>0.05)."nConclusion: Experimental adhesive bonding showed acceptable results regarding microleakage and shear bond strength. It may be concluded that the experimental dentin bonding had a comparable performance quality with that of commercial system

    Effect of Fiber Layers on the Fracture Resistance of Fiber Reinforced Composite Bridges

    No full text
    Introduction: The purpose of this in vitro study was to introduce the fiber reinforced composite bridges and evaluate the most suitable site and position for placement of fibers in order to get maximum strength. Methods: The study included 20 second premolars and 20 second molars selected for fabricating twenty fiber reinforced composite bridges. Twenty specimens were selected for one fiber layer and the remaining teeth for two fiber layers. In the first group, fibers were placed in the inferior third and in the second group, fibers were placed in both the middle and inferior third region. After tooth preparation, the restorations were fabricated, thermocycled and then loaded with universal testing machine in the middle of the pontics with crosshead speed of 1mm/min. Data was analyzed by Kolmogorov-Smirnov test, Independent sample t test and Kaplan-Meier test. Mode of failure was evaluated using stereomicroscope. Results: Mean fracture resistance for the first and second groups was 1416±467N and 1349±397N, respectively. No significant differences were observed between the groups (P>0.05).In the first group, 5 specimens had delamintation and 5 specimens had detachment between fibers and resin composite. In the second group, there were 4 and 6 delaminations and detachments, respectively. There was no fracture within the fiber. Conclusion: In the fiber reinforced fixed partial dentures, fibers reinforce the tensile side of the connectors but placement of additional fibers at other sites does not increase the fracture resistance of the restoration

    Recent Advances and Future Perspectives for Reinforcement of Poly(methyl methacrylate) Denture Base Materials: A Literature Review

    No full text
    Poly(methyl methacrylate) (PMMA) is the most common material used to fabricate complete and partial dentures. Despite its desirable properties, it cannot fulfill all mechanical requirements of prosthesis. Flexural fatigue due to repeated masticatory and high-impact forces caused by dropping are the main causes of denture fractures. In the past, different reinforcing agents such as rubbers, macro fibers, and fillers have been employed to improve the mechanical properties of denture base resins. Development of Nano dentistry has introduced new approaches for reinforcement of dental materials. Interest in nanostructure materials is driven by their high surface area to volume ratio, which enhances interfacial interaction and specific new biological, physical, and chemical properties. Researchers to reinforce PMMA resins have used Nanoparticles (Nps) which were comprised of silver, Titania (TiO2), zirconia (ZrO2), alumina, and ceramic. Although different reports describe the use of nanofiber and nanotubes in dental composites, few studies have evaluated the reinforcement potential of nanofiber and nanotubes in PMMA denture base resins. The current article aims to review the different attempts to enhance the mechanical properties of denture base materials. We also focus on recent advances and potential future developments for reinforcement of the PMMA acrylic resins
    corecore