14 research outputs found

    Large-scale forward genetics screening identifies Trpa1 as a chemosensor for predator odor-evoked innate fear behaviors

    No full text
    Innate behaviors are genetically encoded, but their underlying molecular mechanisms remain largely unknown. Predator odor 2,4,5-trimethyl-3-thiazoline (TMT) and its potent analog 2-methyl-2-thiazoline (2MT) are believed to activate specific odorant receptors to elicit innate fear/defensive behaviors in naive mice. Here, we conduct a large-scale recessive genetics screen of ethylnitrosourea (ENU)-mutagenized mice. We find that loss of Trpa1, a pungency/irritancy receptor, diminishes TMT/2MT and snake skin-evoked innate fear/defensive responses. Accordingly, Trpa1 -/- mice fail to effectively activate known fear/stress brain centers upon 2MT exposure, despite their apparent ability to smell and learn to fear 2MT. Moreover, Trpa1 acts as a chemosensor for 2MT/TMT and Trpa1-expressing trigeminal ganglion neurons contribute critically to 2MT-evoked freezing. Our results indicate that Trpa1-mediated nociception plays a crucial role in predator odor-evoked innate fear/defensive behaviors. The work establishes the first forward genetics screen to uncover the molecular mechanism of innate fear, a basic emotion and evolutionarily conserved survival mechanism

    Role of a Hippocampal Src-Family Kinase-Mediated Glutamatergic Mechanism in Drug Context-Induced Cocaine Seeking

    No full text
    Glutamatergic neurotransmission in the dorsal hippocampus (DH) is necessary for drug context-induced reinstatement of cocaine-seeking behavior in an animal model of drug relapse. Furthermore, in vitro studies suggest that the Src family of tyrosine kinases critically regulates glutamatergic cellular functions within the DH. Thus, Src-family kinases in the DH may similarly control contextual cocaine-seeking behavior. To test this hypothesis, rats were trained to lever press for un-signaled cocaine infusions in a distinct context followed by extinction training in a different context. Cocaine-seeking behavior (non-reinforced active lever pressing) was then assessed in the previously cocaine-paired and extinction contexts after AP5 (N-methyl-D-aspartate glutamate (NMDA) receptor (NMDAR) antagonist; 0.25 or 2.5 μg/0.5 μl/hemisphere), PP2 (Src-family kinase inhibitor; 6.25 or 62.5 ng/0.5 μl/hemisphere), Ro25-6981 (NR2B subunit-containing NMDAR antagonist; 0.2 or 2 μg/0.5 μl/hemisphere), or vehicle administration into the DH. Administration of AP5, PP2, or Ro25-6981 into the DH dose-dependently impaired drug context-induced reinstatement of cocaine-seeking behavior relative to vehicle, without altering instrumental behavior in the extinction context or food-reinforced instrumental responding and general motor activity in control experiments. Cocaine-seeking behavior during the first 20 min of the test session in the cocaine-paired context was associated with an increase in NR2B subunit activation, and intra-DH PP2 pretreatment disrupted this relationship. Together, these findings suggest that Src-family kinase activation, NMDAR stimulation, and likely Src-family kinase-mediated NR2B subunit-containing NMDAR activation in the DH are necessary for incentive motivational and/or memory processes that promote contextual cocaine-seeking behavior
    corecore