795 research outputs found

    Giant nonlinear conduction and thyristor-like negative derivative resistance in BaIrO3 single crystals

    Full text link
    We synthesized single-crystalline samples of monoclinic BaIrO3 using a molten flux method, and measured their magnetization, resistivity, Seebeck coefficient and nonlinear voltage-current characteristics. The magnetization rapidly increases below a ferromagnetic transition temperature TC of 180 K, where the resistivity concomitantly shows a hump-type anomaly, followed by a sharp increase below 30 K. The Seebeck coefficient suddenly increases below TC, and shows linear temperature dependence below 50 K. A most striking feature of this compound is that the anomalously giant nonlinear conduction is observed below 30 K, where a small current density of 20 A/cm2 dramatically suppresses the sharp increase in resistivity to induce a metallic conduction down to 4 K.Comment: 10 pages, 4 figures Submitted to Physical Review Letter

    Geometrical frustration induced (semi-)metal to insulator transition

    Get PDF
    We study the low-energy properties of the geometrically frustrated Hubbard model on a three-dimensional pyrochlore lattice and a two-dimensional checkerboard lattice on the basis of the renormalization group method and mean field analysis. It is found that in the half-filling case, a (semi-)metal to insulator transition (MIT) occurs. Also, in the insulating phase, which has a spin gap, the spin rotational symmetry is not broken, while charge ordering exists. The results are applied to the description of the MIT observed in the pyrochlore system Tl2Ru2O7{\rm Tl_2Ru_2O_7}.Comment: 4 pages, 5 figure

    Stability of a metallic state in the two-orbital Hubbard model

    Full text link
    Electron correlations in the two-orbital Hubbard model at half-filling are investigated by combining dynamical mean field theory with the exact diagonalization method. We systematically study how the interplay of the intra- and inter-band Coulomb interactions, together with the Hund coupling, affects the metal-insulator transition. It is found that if the intra- and inter-band Coulomb interactions are nearly equal, the Fermi-liquid state is stabilized due to orbital fluctuations up to fairly large interactions, while the system is immediately driven to the Mott insulating phase away from this condition. The effects of the isotropic and anisotropic Hund coupling are also addressed.Comment: 7 pages, 9 figure

    Classical generalized constant coupling model for geometrically frustrated antiferromagnets

    Full text link
    A generalized constant coupling approximation for classical geometrically frustrated antiferromagnets is presented. Starting from a frustrated unit we introduce the interactions with the surrounding units in terms of an internal effective field which is fixed by a self consistency condition. Results for the magnetic susceptibility and specific heat are compared with Monte Carlo data for the classical Heisenberg model for the pyrochlore and kagome lattices. The predictions for the susceptibility are found to be essentially exact, and the corresponding predictions for the specific heat are found to be in very good agreement with the Monte Carlo results.Comment: 4 pages, 3 figures, 2 columns. Discussion about the zero T value of the pyrochlore specific heat correcte

    Quantum generalized constant coupling model for geometrically frustrated antiferromagnets

    Full text link
    A generalized constant coupling approximation for quantum geometrically frustrated antiferromagnets is presented. Starting from a frustrated unit, we introduce the interactions with the surrounding units in terms of an internal effective field which is fixed by a self consistency condition. Results for the static magnetic susceptibility and specific heat are compared with previous results in the framework of this same model for the classical limit. The range of applicability of the model is discussed.Comment: 11 pages, 6 figures, 1 Tables, typeset using RevTeX 4, small correction in Table

    Hole-doping effects on a frustrated spin ladder

    Full text link
    Hole-doping effects are investigated on the {\it t-J} ladder model with the linked-tetrahedra structure. We discuss how a metal-insulator transition occurs upon hole doping with particular emphasis on the effects of geometrical frustration. By computing the electron density and the spin correlation function by the density matrix renormalization group, we show that strong frustration triggers a first-order transition to a metallic phase, when holes are doped into the plaquette-singlet phase. By examining spin excitations in a metallic case in detail, we discuss whether the spin-gap phase persists upon hole doping according to the strength of frustration. It is further shown that the lowest excited state in a spin-gap metallic phase can be described in two independent quasiparticles.Comment: 7 pages, 9 figure

    Testing the theory of immune selection in cancers that break the rules of transplantation

    Get PDF
    Modification of cancer cells likely to reduce their immunogenicity, including loss or down-regulation of MHC molecules, is now well documented and has become the main support for the concept of immune surveillance. The evidence that these modifications, in fact, result from selection by the immune system is less clear, since the possibility that they may result from reorganized metabolism associated with proliferation or from cell de-differentiation remains. Here, we (a) survey old and new transplantation experiments that test the possibility of selection and (b) survey how transmissible tumours of dogs and Tasmanian devils provide naturally evolved tests of immune surveillance

    Charge ordering in the spinels AlV2_2O4_4 and LiV2_2O4_4

    Full text link
    We develop a microscopic theory for the charge ordering (CO) transitions in the spinels AlV2_2O4_4 and LiV2_2O4_4 (under pressure). The high degeneracy of CO states is lifted by a coupling to the rhombohedral lattice deformations which favors transition to a CO state with inequivalent V(1) and V(2) sites forming Kagom\'e and trigonal planes respectively. We construct an extended Hubbard type model including a deformation potential which is treated in unrestricted Hartree Fock approximation and describes correctly the observed first-order CO transition. We also discuss the influence of associated orbital order. Furthermore we suggest that due to different band fillings AlV2_2O4_4 should remain metallic while LiV2_2O4_4 under pressure should become a semiconductor when charge disproportionation sets in
    corecore