71 research outputs found

    Characterization of Xenopus Tissue Inhibitor of Metalloproteinases-2: A Role in Regulating Matrix Metalloproteinase Activity during Development

    Get PDF
    Frog metamorphosis is totally dependent on thyroid hormone (T3) and mimics the postembryonic period around birth in mammals. It is an excellent model to study the molecular basis of postembryonic development in vertebrate. We and others have shown that many, if not all, matrix metalloproteinases (MMPs), which cleave proteins of the extracellular matrix as well as other substrates, are induced by T3 and important for metamorphosis. MMP activity can be inhibited by tissue inhibitors of metalloproteinase (TIMPs). There are 4 TIMPs in vertebrates and their roles in postembryonic development are poorly studied.We analyzed the TIMP2 genes in Xenopus laevis and the highly related species Xenopus tropicalis and discovered that TIMP2 is a single copy gene in Xenopus tropicalis as in mammals but is duplicated in Xenopus laevis. Furthermore, the TIMP2 locus in Xenopus tropicalis genome is different from that in human, suggesting an evolutionary reorganization of the locus. More importantly, we found that the duplicated TIMP2 genes were similarly regulated in the developing limb, remodeling intestine, resorbing tail during metamorphosis. Unexpectedly, like its MMP target genes, the TIMP2 genes were upregulated by T3 during both natural and T3-induced metamorphosis.Our results indicate that TIMP2 is highly conserved among vertebrates and that the TIMP2 locus underwent a chromosomal reorganization during evolution. Furthermore, the unexpected upregulation of TIMP2 genes during metamorphosis suggests that proper balance of MMP activity is important for metamorphosis

    Association between a variation in the phosphodiesterase 4D gene and bone mineral density

    Get PDF
    BACKGROUND: Fragility fractures caused by osteoporosis are a major cause of morbidity and mortality in aging populations. Bone mineral density (BMD) is a useful surrogate marker for risk of fracture and is a highly heritable trait. The genetic variants underlying this genetic contribution are largely unknown. METHODS: We performed a large-scale association study investigating more than 25,000 single nucleotide polymorphisms (SNPs) located within 16,000 genes. Allele frequencies were estimated in contrasting DNA pools from white females selected for low (<0.87 g/cm(2), n = 319) and high (> 1.11 g/cm(2), n = 321) BMD at the lumbar spine. Significant findings were verified in two additional sample collections. RESULTS: Based on allele frequency differences between DNA pools and subsequent individual genotyping, one of the candidate loci indicated was the phosphodiesterase 4D (PDE4D) gene region on chromosome 5q12. We subsequently tested the marker SNP, rs1498608, in a second sample of 138 white females with low (<0.91 g/cm(2)) and 138 females with high (>1.04 g/cm(2)) lumbar spine BMD. Odds ratios were 1.5 (P = 0.035) in the original sample and 2.1 (P = 0.018) in the replication sample. Association fine mapping with 80 SNPs located within 50 kilobases of the marker SNP identified a 20 kilobase region of association containing exon 6 of PDE4D. In a second, family-based replication sample with a preponderance of females with low BMD, rs1498608 showed an opposite relationship with BMD at different sites (p = 0.00044-0.09). We also replicated the previously reported association of the Ser37Ala polymorphism in BMP2, known to interact biologically with PDE4D, with BMD. CONCLUSION: This study indicates that variants in the gene encoding PDE4D account for some of the genetic contribution to bone mineral density variation in humans. The contrasting results from different samples indicate that the effect may be context-dependent. PDE4 inhibitors have been shown to increase bone mass in normal and osteopenic mice, but up until now there have been no reports implicating any member of the PDE4 gene family in human osteoporosis

    Parathyroid hormone exerts disparate effects on osteoblast differentiation depending on exposure time in rat osteoblastic cells.

    No full text
    It has been reported that PTH exerts bone-forming effects in vivo when administered intermittently. In the present study, the anabolic effects of PTH(1-34) on osteoblast differentiation were examined in vitro. Osteoblastic cells isolated from newborn rat calvaria were cyclically treated with PTH(1-34) for the first few hours of each 48-h incubation cycle. When osteoblastic cells were intermittently exposed to PTH only for the first hour of each 48-h incubation cycle and cultured for the remainder of the cycle without the hormone, osteoblast differentiation was inhibited by suppressing alkaline phosphatase activity, bone nodule formation, and mRNA expression of alkaline phosphatase, osteocalcin, and PTH/PTHrP receptor. Experiments using inhibitors and stimulators of cAMP/protein kinase A (PKA) and Ca2+/PKC demonstrated that cAMP/PKA was the major signal transduction system in the inhibitory action of PTH. In contrast, the intermittent exposure to PTH for the first 6 h of each 48-h cycle stimulated osteoblast differentiation. Both cAMP/ PKA and Ca2+/PKC systems appeared to be involved cooperatively in this anabolic effect. Continuous exposure to PTH during the 48-h incubation cycle strongly inhibited osteoblast differentiation. Although both cAMP/PKA and Ca2+/PKC were involved in the effect of continuous exposure to PTH, they appeared to act independently. A neutralizing antibody against IGF-I blocked the stimulatory effect on alkaline phosphatase activity and the expression of osteocalcin mRNA induced by the 6-h intermittent exposure. The inhibitory effect induced by the 1-h intermittent exposure was not affected by anti-IGF-I antibody. These results suggest that PTH has diverse effects on osteoblast differentiation depending on the exposure time in vitro mediated through different signal transduction systems. These in vitro findings explain at least in part the in vivo action of PTH that varies with the mode of administration

    Sequential treatment with zoledronic acid followed by teriparatide or vice versa increases bone mineral density and bone strength in ovariectomized rats

    No full text
    Bisphosphonates (BPs) and teriparatide (TPTD) are both effective treatments for osteoporosis, but BP treatment prior to daily TPTD treatment has been shown to impair the effect of TPTD in some clinical studies. In contrast, the loss of bone mineral density (BMD) that occurs after withdrawal of TPTD can be prevented by BP treatment. Although various studies have investigated the combination and/or sequential use of BP and TPTD, there have been no clinical studies investigating sequential treatment with zoledronic acid (ZOL) and TPTD (or vice versa). In this study, we evaluated the effects of sequential treatment with TPTD followed by ZOL, and ZOL followed by TPTD, using ovariectomized (OVX) rats. Two months after OVX, osteopenic rats were treated with ZOL, TPTD, or vehicle for a period of 4 months (first treatment period), and then the treatments were switched and administered for another 4 months (second treatment period). The group treated with ZOL followed by TPTD showed an immediate increase in BMD of the proximal tibia and greater BMD and bone strength of the lumbar vertebral body, femoral diaphysis, and proximal femur than the group treated with ZOL followed by vehicle. Serum osteocalcin, a marker of bone formation, increased rapidly after switching to TPTD from ZOL. The group treated with TPTD followed by ZOL did not lose BMD in the proximal tibia after TPTD was stopped, while the group treated with TPTD followed by vehicle did lose BMD. The BMD and bone strength of the lumbar vertebral body, femoral diaphysis, and proximal femur were greater in the group treated with TPTD followed by ZOL than in the group treated with TPTD followed by vehicle. The increase in serum osteocalcin and urinary CTX after withdrawal of TPTD was prevented by the switch from TPTD to ZOL. In conclusion, our results demonstrate that switching from ZOL to TPTD resulted in a non-attenuated anabolic response in the lumbar spine and femur of OVX rats. In addition, switching from TPTD to ZOL caused BMD to be maintained or further increased. If these results can be reproduced in a clinical setting, the sequential use of ZOL followed by TPTD or vice versa in the treatment of osteoporosis patients would contribute to increases in BMD that, hopefully, would translate into a corresponding decrease in the incidence of vertebral and non-vertebral fractures
    corecore