61 research outputs found

    The prevalence of and factors related to calcium pyrophosphate dihydrate crystal deposition in the knee joint

    Get PDF
    SummaryObjectivesThe purpose of this study was to reveal the accurate prevalence and related factors to the presence of calcium pyrophosphate dihydrate (CPPD) crystal deposition in cadaveric knee joints.DesignControlled laboratory study.MethodsSix hundred and eight knees from 304 cadavers (332 male knees and 276 female knees, formalin fixed, Japanese anatomical specimens) were included in this study. The average age of the cadavers was 78.3 ± 10.7 years. Knees were macroscopically evaluated for the existence of CPPD, and the depth of cartilage degeneration of the femoro-tibial joint following the Outerbridge's classification. CPPD crystal was confirmed under Fourier transform infrared spectroscopy (FTIR) analysis using light microscopy. Statistical analysis was performed to reveal the correlation between the occurrence of CPPD deposition in the knee joint and gender, age, and the depth of cartilage degeneration of the femoro-tibial joint.ResultsThe prevalence of grossly visible CPPD crystal was 13% (79 knees). In all of these knees, CPPD crystal was confirmed under FTIR analysis. Statistical analysis showed significant correlation between the occurrence of CPPD deposition and gender (P < 0.001), and depth of cartilage degeneration in the femoro-tibial joint (P < 0.001). In the cartilage degeneration positive knees (Over grade 3 in Outerbridge's classification), average age of CPPD deposition knee was significantly higher than CPPD negative knees.ConclusionsIn this study, the prevalence of CPPD deposition disease was evaluated in a relatively large sample size of cadaveric knees. The prevalence of CPPD deposition disease was 13%, and was significantly correlated with the subject's age, gender, and severity of cartilage degeneration in the femoro-tibial joint

    The morphometry of soft tissue insertions on the tibial plateau: Data acquisition and statistical shape analysis

    Get PDF
    This study characterized the soft tissue insertion morphometrics on the tibial plateau and their inter-relationships as well as variabilities. The outlines of the cruciate ligament and meniscal root insertions along with the medial and lateral cartilage on 20 cadaveric tibias (10 left and 10 right knees) were digitized and co-registered with corresponding CT-based 3D bone models. Generalized Procrustes Analysis was employed in conjunction with Principal Components Analysis to first create a geometric consensus based on tibial cartilage and then determine the means and variations of insertion morphometrics including shape, size, location, and inter-relationship measures. Step-wise regression analysis was conducted in search of parsimonious models relating the morphometric measures to the tibial plateau width and depth, and basic anthropometric and gender factors. The analyses resulted in statistical morphometric representations for Procrustes-superimposed cruciate ligament and meniscus insertions, and identified only a few moderate correlations (R 2: 0.37-0.49). The study provided evidence challenging the isometric scaling based on a single dimension frequently employed in related morphometric studies, and data for evaluating cruciate ligament reconstruction strategies in terms of re-creating the native anatomy and minimizing the risk of iatrogenic injury. It paved the way for future development of computer-aided personalized orthopaedic surgery applications improving the quality of care and patient safety, and biomechanical models with a better population or average representation
    corecore