47 research outputs found

    Improving Network-on-Chip-based Turbo Decoder Architectures

    Get PDF
    In this work novel results concerning Networkon- Chip-based turbo decoder architectures are presented. Stemming from previous publications, this work concentrates first on improving the throughput by exploiting adaptive-bandwidth-reduction techniques. This technique shows in the best case an improvement of more than 60 Mb/s. Moreover, it is known that double-binary turbo decoders require higher area than binary ones. This characteristic has the negative effect of increasing the data width of the network nodes. Thus, the second contribution of this work is to reduce the network complexity to support doublebinary codes, by exploiting bit-level and pseudo-floatingpoint representation of the extrinsic information. These two techniques allow for an area reduction of up to more than the 40 % with a performance degradation of about 0.2 d

    Gold(I)-Catalyzed Coupling Reactions for the Synthesis of Diverse Small Molecules Using the Build/Couple/Pair Strategy

    Get PDF
    The build/couple/pair strategy has yielded small molecules with stereochemical and skeletal diversity by using short reaction sequences. Subsequent screening has shown that these compounds can achieve biological tasks considered challenging if not impossible (‘undruggable’) for small molecules. We have developed gold(I)-catalyzed cascade reactions of easily prepared propargyl propiolates as a means to achieve effective intermolecular coupling reactions for this strategy. Sequential alkyne activation of propargyl propiolates by a cationic gold(I) catalyst yields an oxocarbenium ion that we previously showed is trapped by C-based nucleophiles at an extrannular site to yield α-pyrones. Here, we report O-based nucleophiles react by ring opening to afford a novel polyfunctional product. In addition, by coupling suitable building blocks, we subsequently performed intramolecular pairing reactions that yield diverse and complex skeletons. These pairing reactions include one based on a novel aza-Wittig-6π-electrocyclization sequence and others based on ring-closing metathesis reactions.Chemistry and Chemical Biolog
    corecore