223,676 research outputs found
Universal Ratios of Characteristic Lengths in Semidilute Polymer Solutions
We use experimental and simulation data from the literature to infer five
characteristic lengths, denoted , , , , and
of a semidilute polymer solution. The first two of these are defined in
terms of scattering from the solution, the third is defined in terms of osmotic
pressure, the fourth by the spatial monomer concentration profile, and the last
by co-operative diffusion. In a given solution the ratios of any of these five
lengths are expected to be universal constants. Knowing these constants thus
allows one to use one measured property of a solution as a means of inferring
others. We calculate these ratios and estimate their uncertainties for
solutions in theta as well as good-solvent conditions. The analysis is
strengthened by use of scattering properties of isolated polymers inferred from
computer simulations.Comment: 15 pages(pdf), to be submitted to Macromolecules or J. Chem. Phy
Ubiquitination accomplished: E1 and E2 enzymes were not necessary
Qiu et al. (2016) show that a mono-ADP-ribosyltransferase, SdeA, from Legionella pneumophila catalyzes ADP-ribosylation of ubiquitin, allowing SdeA to modify substrate with ubiquitin in the absence of E1 and E2 enzymes
Transition Temperature of a Uniform Imperfect Bose Gas
We calculate the transition temperature of a uniform dilute Bose gas with
repulsive interactions, using a known virial expansion of the equation of
state. We find that the transition temperature is higher than that of an ideal
gas, with a fractional increase K_0(na^3)^{1/6}, where n is the density and a
is the S-wave scattering length, and K_0 is a constant given in the paper. This
disagrees with all existing results, analytical or numerical. It agrees exactly
in magnitude with a result due to Toyoda, but has the opposite sign.Comment: Email correspondence to [email protected] ; 2 pages using REVTe
Decay of weak turbulence
Weak turbulence fields generated by single and multiple stage grids covering Reynolds numbers between 7 and 70 showing decay of energy spectr
Accurate measurement of the piezoelectric coefficient of thin films by eliminating the substrate bending effect using spatial scanning laser vibrometry
One of the major difficulties in measuring the piezoelectric coefficient d(33,f)
for thin films is the elimination of the contribution from substrate bending. We
show by theoretical analysis and experimental measurements that by bonding thin
film piezoelectric samples to a substantial holder, the substrate bending can be
minimized to a negligible level. Once the substrate bending can be effectively
eliminated, single-beam laser scanning vibrometry can be used to measure the
precise strain distribution of a piezoelectric thin film under converse
actuation. A significant strain increase toward the inside edge of the top
electrode (assuming a fully covered bottom electrode) and a corresponding strain
peak in the opposite direction just outside the electrode edge were observed.
These peaks were found to increase with the increasing Poisson's ratio and
transverse piezoelectric coefficient of the piezoelectric thin film. This is due
to the non-continuity of the electric field at the edge of the top electrode,
which leads to the concentration of shear stress and electric field in the
vicinity of the electrode edge. The measured d(33,f) was found to depend not
only on the material properties such as the electromechanical coefficients of
the piezoelectric thin films and elastic coefficients of the thin film and the
substrate, but also on the geometry factors such as the thickness of the
piezoelectric films, the dimensions of the electrode, and also the thickness of
the substrate
- …
