166 research outputs found

    Pinsker estimators for local helioseismology

    Full text link
    A major goal of helioseismology is the three-dimensional reconstruction of the three velocity components of convective flows in the solar interior from sets of wave travel-time measurements. For small amplitude flows, the forward problem is described in good approximation by a large system of convolution equations. The input observations are highly noisy random vectors with a known dense covariance matrix. This leads to a large statistical linear inverse problem. Whereas for deterministic linear inverse problems several computationally efficient minimax optimal regularization methods exist, only one minimax-optimal linear estimator exists for statistical linear inverse problems: the Pinsker estimator. However, it is often computationally inefficient because it requires a singular value decomposition of the forward operator or it is not applicable because of an unknown noise covariance matrix, so it is rarely used for real-world problems. These limitations do not apply in helioseismology. We present a simplified proof of the optimality properties of the Pinsker estimator and show that it yields significantly better reconstructions than traditional inversion methods used in helioseismology, i.e.\ Regularized Least Squares (Tikhonov regularization) and SOLA (approximate inverse) methods. Moreover, we discuss the incorporation of the mass conservation constraint in the Pinsker scheme using staggered grids. With this improvement we can reconstruct not only horizontal, but also vertical velocity components that are much smaller in amplitude

    Convergence rates of general regularization methods for statistical inverse problems and applications

    Get PDF
    During the past the convergence analysis for linear statistical inverse problems has mainly focused on spectral cut-off and Tikhonov type estimators. Spectral cut-off estimators achieve minimax rates for a broad range of smoothness classes and operators, but their practical usefulness is limited by the fact that they require a complete spectral decomposition of the operator. Tikhonov estimators are simpler to compute, but still involve the inversion of an operator and achieve minimax rates only in restricted smoothness classes. In this paper we introduce a unifying technique to study the mean square error of a large class of regularization methods (spectral methods) including the aforementioned estimators as well as many iterative methods, such as í-methods and the Landweber iteration. The latter estimators converge at the same rate as spectral cut-off, but only require matrixvector products. Our results are applied to various problems, in particular we obtain precise convergence rates for satellite gradiometry, L2-boosting, and errors in variable problems. --Statistical inverse problems,iterative regularization methods,Tikhonov regularization,nonparametric regression,minimax convergence rates,satellite gradiometry,Hilbert scales,boosting,errors in variable

    Convergence rates in expectation for Tikhonov-type regularization of Inverse Problems with Poisson data

    Full text link
    In this paper we study a Tikhonov-type method for ill-posed nonlinear operator equations \gdag = F( ag) where \gdag is an integrable, non-negative function. We assume that data are drawn from a Poisson process with density t\gdag where t>0t>0 may be interpreted as an exposure time. Such problems occur in many photonic imaging applications including positron emission tomography, confocal fluorescence microscopy, astronomic observations, and phase retrieval problems in optics. Our approach uses a Kullback-Leibler-type data fidelity functional and allows for general convex penalty terms. We prove convergence rates of the expectation of the reconstruction error under a variational source condition as tt\to\infty both for an a priori and for a Lepski{\u\i}-type parameter choice rule

    Iteratively regularized Newton-type methods for general data misfit functionals and applications to Poisson data

    Get PDF
    We study Newton type methods for inverse problems described by nonlinear operator equations F(u)=gF(u)=g in Banach spaces where the Newton equations F(un;un+1un)=gF(un)F'(u_n;u_{n+1}-u_n) = g-F(u_n) are regularized variationally using a general data misfit functional and a convex regularization term. This generalizes the well-known iteratively regularized Gauss-Newton method (IRGNM). We prove convergence and convergence rates as the noise level tends to 0 both for an a priori stopping rule and for a Lepski{\u\i}-type a posteriori stopping rule. Our analysis includes previous order optimal convergence rate results for the IRGNM as special cases. The main focus of this paper is on inverse problems with Poisson data where the natural data misfit functional is given by the Kullback-Leibler divergence. Two examples of such problems are discussed in detail: an inverse obstacle scattering problem with amplitude data of the far-field pattern and a phase retrieval problem. The performence of the proposed method for these problems is illustrated in numerical examples

    Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy

    Get PDF
    Ultrafast electron and X-ray imaging and spectroscopy are the basis for an ongoing revolution in the understanding of dynamical atomic-scale processes in matter. The underlying technology relies heavily on laser science for the generation and characterization of ever shorter pulses. Recent findings suggest that ultrafast electron microscopy with attosecond-structured wavefunctions may be feasible. However, such future technologies call for means to both prepare and fully analyse the corresponding free-electron quantum states. Here, we introduce a framework for the preparation, coherent manipulation and characterization of free-electron quantum states, experimentally demonstrating attosecond electron pulse trains. Phase-locked optical fields coherently control the electron wavefunction along the beam direction. We establish a new variant of quantum state tomography—‘SQUIRRELS’—for free-electron ensembles. The ability to tailor and quantitatively map electron quantum states will promote the nanoscale study of electron–matter entanglement and new forms of ultrafast electron microscopy down to the attosecond regime

    The Iteratively Regularized Gau{\ss}-Newton Method with Convex Constraints and Applications in 4Pi-Microscopy

    Full text link
    This paper is concerned with the numerical solution of nonlinear ill-posed operator equations involving convex constraints. We study a Newton-type method which consists in applying linear Tikhonov regularization with convex constraints to the Newton equations in each iteration step. Convergence of this iterative regularization method is analyzed if both the operator and the right hand side are given with errors and all error levels tend to zero. Our study has been motivated by the joint estimation of object and phase in 4Pi microscopy, which leads to a semi-blind deconvolution problem with nonnegativity constraints. The performance of the proposed algorithm is illustrated both for simulated and for three-dimensional experimental data

    Necessary conditions for variational regularization schemes

    Full text link
    We study variational regularization methods in a general framework, more precisely those methods that use a discrepancy and a regularization functional. While several sets of sufficient conditions are known to obtain a regularization method, we start with an investigation of the converse question: How could necessary conditions for a variational method to provide a regularization method look like? To this end, we formalize the notion of a variational scheme and start with comparison of three different instances of variational methods. Then we focus on the data space model and investigate the role and interplay of the topological structure, the convergence notion and the discrepancy functional. Especially, we deduce necessary conditions for the discrepancy functional to fulfill usual continuity assumptions. The results are applied to discrepancy functionals given by Bregman distances and especially to the Kullback-Leibler divergence.Comment: To appear in Inverse Problem

    Mathematical Modelling of Optical Coherence Tomography

    Full text link
    In this chapter a general mathematical model of Optical Coherence Tomography (OCT) is presented on the basis of the electromagnetic theory. OCT produces high resolution images of the inner structure of biological tissues. Images are obtained by measuring the time delay and the intensity of the backscattered light from the sample considering also the coherence properties of light. The scattering problem is considered for a weakly scattering medium located far enough from the detector. The inverse problem is to reconstruct the susceptibility of the medium given the measurements for different positions of the mirror. Different approaches are addressed depending on the different assumptions made about the optical properties of the sample. This procedure is applied to a full field OCT system and an extension to standard (time and frequency domain) OCT is briefly presented.Comment: 28 pages, 5 figures, book chapte
    corecore