67 research outputs found
On the global well-posedness for the Boussinesq system with horizontal dissipation
In this paper, we investigate the Cauchy problem for the tridimensional
Boussinesq equations with horizontal dissipation. Under the assumption that the
initial data is an axisymmetric without swirl, we prove the global
well-posedness for this system. In the absence of vertical dissipation, there
is no smoothing effect on the vertical derivatives. To make up this
shortcoming, we first establish a magic relationship between
and by taking full advantage of the structure of the
axisymmetric fluid without swirl and some tricks in harmonic analysis. This
together with the structure of the coupling of \eqref{eq1.1} entails the
desired regularity.Comment: 32page
On the global well-posedness of a class of Boussinesq- Navier-Stokes systems
In this paper we consider the following 2D Boussinesq-Navier-Stokes systems
\partial_{t}u+u\cdot\nabla u+\nabla p+ |D|^{\alpha}u &= \theta e_{2}
\partial_{t}\theta+u\cdot\nabla \theta+ |D|^{\beta}\theta &=0 \quad with
and . When , , where is an explicit function
as a technical bound, we prove global well-posedness results for rough initial
data.Comment: 23page
Interaction of vortices in viscous planar flows
We consider the inviscid limit for the two-dimensional incompressible
Navier-Stokes equation in the particular case where the initial flow is a
finite collection of point vortices. We suppose that the initial positions and
the circulations of the vortices do not depend on the viscosity parameter \nu,
and we choose a time T > 0 such that the Helmholtz-Kirchhoff point vortex
system is well-posed on the interval [0,T]. Under these assumptions, we prove
that the solution of the Navier-Stokes equation converges, as \nu -> 0, to a
superposition of Lamb-Oseen vortices whose centers evolve according to a
viscous regularization of the point vortex system. Convergence holds uniformly
in time, in a strong topology which allows to give an accurate description of
the asymptotic profile of each individual vortex. In particular, we compute to
leading order the deformations of the vortices due to mutual interactions. This
allows to estimate the self-interactions, which play an important role in the
convergence proof.Comment: 39 pages, 1 figur
The Inviscid Limit and Boundary Layers for Navier-Stokes Flows
The validity of the vanishing viscosity limit, that is, whether solutions of
the Navier-Stokes equations modeling viscous incompressible flows converge to
solutions of the Euler equations modeling inviscid incompressible flows as
viscosity approaches zero, is one of the most fundamental issues in
mathematical fluid mechanics. The problem is classified into two categories:
the case when the physical boundary is absent, and the case when the physical
boundary is present and the effect of the boundary layer becomes significant.
The aim of this article is to review recent progress on the mathematical
analysis of this problem in each category.Comment: To appear in "Handbook of Mathematical Analysis in Mechanics of
Viscous Fluids", Y. Giga and A. Novotn\'y Ed., Springer. The final
publication is available at http://www.springerlink.co
On the global well-posedness of the Euler-Boussinesq system with fractional dissipation
International audienc
Time-dependent delta-interactions for 1D Schrödinger Hamiltonians.
The non autonomous Cauchy problem i∂tu = − ∂ 2 xxu+α(t)δ0u with ut=0 = u0 is considered in L 2 (R). The regularity assumptions for α are accurately analyzed and show that the general results for non autonomous linear evolution equations in Banach spaces are far from being optimal. In the mean time, this article shows an unexpected application of paraproduct techniques, initiated by J.M. Bony for nonlinear partial differential equations, to a classical linear problem
- …