87 research outputs found

    Tumor promoters increase the synthesis of a 32,000-dalton protein in BALB/c 3T3 cells.

    Full text link

    Internally repeated sequences in ras gene products

    Full text link

    The Growth and Tumor Suppressors NORE1A and RASSF1A Are Targets for Calpain-Mediated Proteolysis

    Get PDF
    Background: NORE1A and RASSF1A are growth and tumour suppressors inactivated in a variety of cancers. Methylation of NORE1A and RASSF1A promoters is the predominant mechanism for downregulation of these proteins; however, other mechanisms are likely to exist. Methodology/Principal Findings: Here we describe a proteolysis of NORE1A and RASSF1A by calpains as alternative mechanism of their downregulation. Extracts of H358 cell line, a human bronchoalveolar carcinoma, and H460, a large cell carcinoma, were capable of proteolysis of NORE1A protein in the calpain-dependent manner. Likewise, RASSF1A tumor suppressor was proteolyzed by the H358 cell extract. Addition of calpain inhibitor to H358 and H460 cells growing in tissue culture resulted in re-expression of endogenous NORE1A. A survey of 10 human lung tumours revealed that three of them contain an activity capable of inducing NORE1A degradation. Conclusions/Significance: Thus, degradation by calpains is a novel mechanism for downregulation of NORE1A and RASSF1A proteins and might be the mechanism allowing cancer cells to escape growth suppression

    Covering Chemical Diversity of Genetically-Modified Tomatoes Using Metabolomics for Objective Substantial Equivalence Assessment

    Get PDF
    As metabolomics can provide a biochemical snapshot of an organism's phenotype it is a promising approach for charting the unintended effects of genetic modification. A critical obstacle for this application is the inherently limited metabolomic coverage of any single analytical platform. We propose using multiple analytical platforms for the direct acquisition of an interpretable data set of estimable chemical diversity. As an example, we report an application of our multi-platform approach that assesses the substantial equivalence of tomatoes over-expressing the taste-modifying protein miraculin. In combination, the chosen platforms detected compounds that represent 86% of the estimated chemical diversity of the metabolites listed in the LycoCyc database. Following a proof-of-safety approach, we show that % had an acceptable range of variation while simultaneously indicating a reproducible transformation-related metabolic signature. We conclude that multi-platform metabolomics is an approach that is both sensitive and robust and that it constitutes a good starting point for characterizing genetically modified organisms

    Comparative proteomic analysis on fruit ripening processes in two varieties of tropical mango (Mangifera indica)

    Get PDF
    Mango (Mangifera indica L.) is an economically important fruit. However, the marketability of mango is affected by the perishable nature and short shelf-life of the fruit. Therefore, a better understanding of the mango ripening process is of great importance towards extending its postharvest shelf life. Proteomics is a powerful tool that can be used to elucidate the complex ripening process at the cellular and molecular levels. This study utilized 2-dimensional gel electrophoresis (2D-GE) coupled with MALDI-TOF/TOF to identify differentially abundant proteins during the ripening process of the two varieties of tropical mango, Mangifera indica cv. ‘Chokanan’ and Mangifera indica cv ‘Golden Phoenix’. The comparative analysis between the ripe and unripe stages of mango fruit mesocarp revealed that the differentially abundant proteins identified could be grouped into the three categories namely, ethylene synthesis and aromatic volatiles, cell wall degradation and stress-response proteins. There was an additional category for differential proteins identified from the ‘Chokanan’ variety namely, energy and carbohydrate metabolism. However, of all the differential proteins identified, only methionine gamma-lyase was found in both ‘Chokanan’ and ‘Golden Phoenix’ varieties. Six differential proteins were selected from each variety for validation by analysing their respective transcript expression using reverse transcription-quantitative PCR (RT-qPCR). The results revealed that two genes namely, glutathione S-transferase (GST) and alpha-1,4 glucan phosphorylase (AGP) were found to express in concordant with protein abundant. The findings will provide an insight into the fruit ripening process of different varieties of mango fruits, which is important for postharvest management
    corecore