2,494 research outputs found

    Simulating `Complex' Problems with Quantum Monte Carlo

    Full text link
    We present a new quantum Monte Carlo algorithm suitable for generically complex problems, such as systems coupled to external magnetic fields or anyons in two spatial dimensions. We find that the choice of gauge plays a nontrivial role, and can be used to reduce statistical noise in the simulation. Furthermore, it is found that noise can be greatly reduced by approximate cancellations between the phases of the (gauge dependent) statistical flux and the external magnetic flux.Comment: Revtex, 11 pages. 3 postscript files for figures attache

    Three-Body approach to the K^- d Scattering Length in Particle Basis

    Get PDF
    We report on the first calculation of the scattering length A_{K^-d} based on a relativistic three-body approach where the two-body input amplitudes coupled to the Kbar N channels have been obtained with the chiral SU(3) constraint, but with isospin symmetry breaking effects taken into account. Results are compared with a recent calculation applying a similar set of two-body amplitudes,based on the fixed center approximation, considered as a good approximation for a loosely bound target, and for which we find significant deviations from the exact three-body results. Effects of the hyperon-nucleon interaction, and deuteron DD-wave component are also evaluated.Comment: 5 pages, Submitted to Phys. Rev.

    Exact Monte Carlo time dynamics in many-body lattice quantum systems

    Full text link
    On the base of a Feynman-Kac--type formula involving Poisson stochastic processes, recently a Monte Carlo algorithm has been introduced, which describes exactly the real- or imaginary-time evolution of many-body lattice quantum systems. We extend this algorithm to the exact simulation of time-dependent correlation functions. The techniques generally employed in Monte Carlo simulations to control fluctuations, namely reconfigurations and importance sampling, are adapted to the present algorithm and their validity is rigorously proved. We complete the analysis by several examples for the hard-core boson Hubbard model and for the Heisenberg model

    Summary of the First Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE1)

    Get PDF
    Challenges related to development, deployment, and maintenance of reusable software for science are becoming a growing concern. Many scientists’ research increasingly depends on the quality and availability of software upon which their works are built. To highlight some of these issues and share experiences, the First Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE1) was held in November 2013 in conjunction with the SC13 Conference. The workshop featured keynote presentations and a large number (54) of solicited extended abstracts that were grouped into three themes and presented via panels. A set of collaborative notes of the presentations and discussion was taken during the workshop. Unique perspectives were captured about issues such as comprehensive documentation, development and deployment practices, software licenses and career paths for developers. Attribution systems that account for evidence of software contribution and impact were also discussed. These include mechanisms such as Digital Object Identifiers, publication of “software papers”, and the use of online systems, for example source code repositories like GitHub. This paper summarizes the issues and shared experiences that were discussed, including cross-cutting issues and use cases. It joins a nascent literature seeking to understand what drives software work in science, and how it is impacted by the reward systems of science. These incentives can determine the extent to which developers are motivated to build software for the long-term, for the use of others, and whether to work collaboratively or separately. It also explores community building, leadership, and dynamics in relation to successful scientific software

    Green Function Monte Carlo with Stochastic Reconfiguration: an effective remedy for the sign problem disease

    Full text link
    A recent technique, proposed to alleviate the ``sign problem disease'', is discussed in details. As well known the ground state of a given Hamiltonian HH can be obtained by applying the imaginary time propagator eHτe^{-H \tau} to a given trial state ψT\psi_T for large imaginary time τ\tau and sampling statistically the propagated state ψτ=eHτψT \psi_{\tau} = e^{-H \tau} \psi_T. However the so called ``sign problem'' may appear in the simulation and such statistical propagation would be practically impossible without employing some approximation such as the well known ``fixed node'' approximation (FN). This method allows to improve the FN dynamic with a systematic correction scheme. This is possible by the simple requirement that, after a short imaginary time propagation via the FN dynamic, a number pp of correlation functions can be further constrained to be {\em exact} by small perturbation of the FN propagated state, which is free of the sign problem. By iterating this scheme the Monte Carlo average sign, which is almost zero when there is sign problem, remains stable and finite even for large τ\tau. The proposed algorithm is tested against the exact diagonalization results available on finite lattice. It is also shown in few test cases that the dependence of the results upon the few parameters entering the stochastic technique can be very easily controlled, unless for exceptional cases.Comment: 44 pages, RevTeX + 5 encaplulated postscript figure

    Structural relaxation of E' gamma centers in amorphous silica

    Full text link
    We report experimental evidence of the existence of two variants of the E' gamma centers induced in silica by gamma rays at room temperature. The two variants are distinguishable by the fine features of their line shapes in paramagnetic resonance spectra. These features suggest that the two E' gamma differ for their topology. We find a thermally induced interconversion between the centers with an activation energy of about 34 meV. Hints are also found for the existence of a structural configuration of minimum energy and of a metastable state.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let

    Conditional citizens? welfare rights and responsibilities in the late 1990s

    Get PDF
    In Britain the relationship between welfare rights and responsibilities has undergone change. A new welfare 'consensus' that emphasizes a citizen ship centred on notions of duty rather than rights has been built. This has allowed the state to reduce its role as a provider of welfare and also defend a position in which the welfare rights of some citizens are increas ingly conditional on those individuals meeting compulsory responsibili ties or duties. This concentration on individual responsibility/duty has undermined the welfare rights of some of the poorest members of society. Three levels of debate are considered within the article: academic, pol itical and 'grassroots'. The latter is included in an attempt to allow some 'bottom up' views into what is largely a debate dominated by social sci entists and politicians

    Extended gaussian ensemble solution and tricritical points of a system with long-range interactions

    Full text link
    The gaussian ensemble and its extended version theoretically play the important role of interpolating ensembles between the microcanonical and the canonical ensembles. Here, the thermodynamic properties yielded by the extended gaussian ensemble (EGE) for the Blume-Capel (BC) model with infinite-range interactions are analyzed. This model presents different predictions for the first-order phase transition line according to the microcanonical and canonical ensembles. From the EGE approach, we explicitly work out the analytical microcanonical solution. Moreover, the general EGE solution allows one to illustrate in details how the stable microcanonical states are continuously recovered as the gaussian parameter γ\gamma is increased. We found out that it is not necessary to take the theoretically expected limit γ\gamma \to \infty to recover the microcanonical states in the region between the canonical and microcanonical tricritical points of the phase diagram. By analyzing the entropy as a function of the magnetization we realize the existence of unaccessible magnetic states as the energy is lowered, leading to a treaking of ergodicity.Comment: 8 pages, 5 eps figures. Title modified, sections rewritten, tricritical point calculations added. To appear in EPJ

    Wearable Haptic Devices for Gait Re-education by Rhythmic Haptic Cueing

    Get PDF
    This research explores the development and evaluation of wearable haptic devices for gait sensing and rhythmic haptic cueing in the context of gait re-education for people with neurological and neurodegenerative conditions. Many people with long-term neurological and neurodegenerative conditions such as Stroke, Brain Injury, Multiple Sclerosis or Parkinson’s disease suffer from impaired walking gait pattern. Gait improvement can lead to better fluidity in walking, improved health outcomes, greater independence, and enhanced quality of life. Existing lab-based studies with wearable devices have shown that rhythmic haptic cueing can cause immediate improvements to gait features such as temporal symmetry, stride length, and walking speed. However, current wearable systems are unsuitable for self-managed use for in-the-wild applications with people having such conditions. This work aims to investigate the research question of how wearable haptic devices can help in long-term gait re-education using rhythmic haptic cueing. A longitudinal pilot study has been conducted with a brain trauma survivor, providing rhythmic haptic cueing using a wearable haptic device as a therapeutic intervention for a two-week period. Preliminary results comparing pre and post-intervention gait measurements have shown improvements in walking speed, temporal asymmetry, and stride length. The pilot study has raised an array of issues that require further study. This work aims to develop and evaluate prototype systems through an iterative design process to make possible the self-managed use of such devices in-the-wild. These systems will directly provide therapeutic intervention for gait re-education, offer enhanced information for therapists, remotely monitor dosage adherence and inform treatment and prognoses over the long-term. This research will evaluate the use of technology from the perspective of multiple stakeholders, including clinicians, carers and patients. This work has the potential to impact clinical practice nationwide and worldwide in neuro-physiotherapy
    corecore