67 research outputs found

    Signatures of Emerging Subsurface Structures in Acoustic Power Maps

    Full text link
    We show that under certain conditions, subsurface structures in the solar interior can alter the average acoustic power observed at the photosphere above them. By using numerical simulations of wave propagation, we show that this effect is large enough for it to be potentially used for detecting emerging active regions before they appear on the surface. In our simulations, simplified subsurface structures are modeled as regions with enhanced or reduced acoustic wave speed. We investigate the dependence of the acoustic power above a subsurface region on the sign, depth, and strength of the wave speed perturbation. Observations from the Solar and Heliospheric Observatory/Michelson Doppler Imager (SOHO/MDI) prior and during the emergence of NOAA active region 10488 are used to test the use of acoustic power as a potential precursor of magnetic flux emergence.Comment: 7 pages, 5 figures, accepted for publication in Solar Physics on 21 March 201

    Turbulent Concentration of mm-Size Particles in the Protoplanetary Nebula: Scale-Dependent Cascades

    Get PDF
    The initial accretion of primitive bodies (here, asteroids in particular) from freely-floating nebula particles remains problematic. Traditional growth-by-sticking models encounter a formidable "meter-size barrier" (or even a mm-to-cm-size barrier) in turbulent nebulae, making the preconditions for so-called "streaming instabilities" difficult to achieve even for so-called "lucky" particles. Even if growth by sticking could somehow breach the meter size barrier, turbulent nebulae present further obstacles through the 1-10km size range. On the other hand, nonturbulent nebulae form large asteroids too quickly to explain long spreads in formation times, or the dearth of melted asteroids. Theoretical understanding of nebula turbulence is itself in flux; recent models of MRI (magnetically-driven) turbulence favor low-or- no-turbulence environments, but purely hydrodynamic turbulence is making a comeback, with two recently discovered mechanisms generating robust turbulence which do not rely on magnetic fields at all. An important clue regarding planetesimal formation is an apparent 100km diameter peak in the pre-depletion, pre-erosion mass distribution of asteroids; scenarios leading directly from independent nebula particulates to large objects of this size, which avoid the problematic m-km size range, could be called "leapfrog" scenarios. The leapfrog scenario we have studied in detail involves formation of dense clumps of aerodynamically selected, typically mm-size particles in turbulence, which can under certain conditions shrink inexorably on 100-1000 orbit timescales and form 10-100km diameter sandpile planetesimals. There is evidence that at least the ordinary chondrite parent bodies were initially composed entirely of a homogeneous mix of such particles. Thus, while they are arcane, turbulent concentration models acting directly on chondrule size particles are worthy of deeper study. The typical sizes of planetesimals and the rate of their formation can be estimated using a statistical model with properties inferred from large numerical simulations of turbulence. Nebula turbulence is described by its Reynolds number Re = (L/eta)(exp 4/3), where L = H alpha(exp 1/2) is the largest eddy scale, H is the nebula gas vertical scale height, alpha the turbulent viscosity parameter, and eta is the Kolmogorov or smallest scale in turbulence (typically about 1km), with eddy turnover time t(sub eta). In the nebula, Re is far larger than any numerical simulation can handle, so some physical arguments are needed to extend the results of numerical simulations to nebula conditions. In this paper, we report new physics to be incorporated into our statistical models

    Planetesimal Initial Mass Functions and Creation Rates Under Turbulent Concentration Using Scale-Dependent Cascades

    Get PDF
    The initial accretion of primitive bodies from freely-floating nebula particles remains problematic. Traditional growth-by-sticking models in turbulent nebulae encounter a "meter-size barrier" due to both drift and destruction, or even a millimeter-to-centimeter-size "bouncing" barrier. Recent suggestions have been made that some "lucky" particles might be able to outgrow the collision and/or drift barriers, and lead to so-called "streaming instabilities" or SI. However, new full models of growth by sticking in the presence of radial drift show that lucky particles (the largest particles, at the tail of the size distribution, that grow beyond the nominal fragmentation and drift barriers) are far too rare to lead to any collective effects such as streaming or gravitational instabilities. Thus we need to focus on typical radii gamma(sub M) which contain most of the mass. Our models of disks with weak-to-moderate turbulence, which include all the most recent experimental constraints on collisional growth, erosion, bouncing, and fragmentation, as well as radial drift, find that growth stalls quite generally at sizes gamma(sub M) which are too small to settle into layers which are dense enough for any collective effects (streaming or gravitational instabilities) to arise. Even if growth by sticking could somehow breach the nominal barriers (perhaps if the actual sticking or strength is larger than current estimates for pure ice or pure silicate, with specific grain sizes), turbulent nebulae present subsequent formidable obstacles to incremental growth through the 1-10km size range. On the other hand, non-turbulent nebulae alpha is less than 10(Sup -4)

    Local helioseismology of sunspot regions: comparison of ring-diagram and time-distance results

    Full text link
    Local helioseismology provides unique information about the subsurface structure and dynamics of sunspots and active regions. However, because of complexity of sunspot regions local helioseismology diagnostics require careful analysis of systematic uncertainties and physical interpretation of the inversion results. We present new results of comparison of the ring-diagram analysis and time-distance helioseismology for active region NOAA 9787, for which a previous comparison showed significant differences in the subsurface sound-speed structure, and discuss systematic uncertainties of the measurements and inversions. Our results show that both the ring-diagram and time-distance techniques give qualitatively similar results, revealing a characteristic two-layer seismic sound-speed structure consistent with the results for other active regions. However, a quantitative comparison of the inversion results is not straightforward. It must take into account differences in the sensitivity, spatial resolution and the averaging kernels. In particular, because of the acoustic power suppression, the contribution of the sunspot seismic structure to the ring-diagram signal can be substantially reduced. We show that taking into account this effect reduces the difference in the depth of transition between the negative and positive sound-speed variations inferred by these methods. Further detailed analysis of the sensitivity, resolution and averaging properties of the local helioseismology methods is necessary for consolidation of the inversion results. It seems to be important that both methods indicate that the seismic structure of sunspots is rather deep and extends to at least 20 Mm below the surface, putting constraints on theoretical models of sunspots.Comment: 10 pages, 10 figures, submitted to Journal of Physics: Conference Series (JPCS) GONG 2010 - SoHO 24 "A new era of seismology of the Sun and solar-like stars", June 27 - July 2, 2010 Aix-en-Provence, Franc

    Helioseismic Holography of an Artificial Submerged Sound Speed Perturbation and Implications for the Detection of Pre-Emergence Signatures of Active Regions

    Full text link
    We use a publicly available numerical wave-propagation simulation of Hartlep et al. 2011 to test the ability of helioseismic holography to detect signatures of a compact, fully submerged, 5% sound-speed perturbation placed at a depth of 50 Mm within a solar model. We find that helioseismic holography as employed in a nominal "lateral-vantage" or "deep-focus" geometry employing quadrants of an annular pupil is capable of detecting and characterizing the perturbation. A number of tests of the methodology, including the use of a plane-parallel approximation, the definition of travel-time shifts, the use of different phase-speed filters, and changes to the pupils, are also performed. It is found that travel-time shifts made using Gabor-wavelet fitting are essentially identical to those derived from the phase of the Fourier transform of the cross-covariance functions. The errors in travel-time shifts caused by the plane-parallel approximation can be minimized to less than a second for the depths and fields of view considered here. Based on the measured strength of the mean travel-time signal of the perturbation, no substantial improvement in sensitivity is produced by varying the analysis procedure from the nominal methodology in conformance with expectations. The measured travel-time shifts are essentially unchanged by varying the profile of the phase-speed filter or omitting the filter entirely. The method remains maximally sensitive when applied with pupils that are wide quadrants, as opposed to narrower quadrants or with pupils composed of smaller arcs. We discuss the significance of these results for the recent controversy regarding suspected pre-emergence signatures of active regions

    Reconstruction of Solar Subsurfaces by Local Helioseismology

    Full text link
    Local helioseismology has opened new frontiers in our quest for understanding of the internal dynamics and dynamo on the Sun. Local helioseismology reconstructs subsurface structures and flows by extracting coherent signals of acoustic waves traveling through the interior and carrying information about subsurface perturbations and flows, from stochastic oscillations observed on the surface. The initial analysis of the subsurface flow maps reconstructed from the 5 years of SDO/HMI data by time-distance helioseismology reveals the great potential for studying and understanding of the dynamics of the quiet Sun and active regions, and the evolution with the solar cycle. In particular, our results show that the emergence and evolution of active regions are accompanied by multi-scale flow patterns, and that the meridional flows display the North-South asymmetry closely correlating with the magnetic activity. The latitudinal variations of the meridional circulation speed, which are probably related to the large-scale converging flows, are mostly confined in shallow subsurface layers. Therefore, these variations do not necessarily affect the magnetic flux transport. The North-South asymmetry is also pronounced in the variations of the differential rotation ("torsional oscillations"). The calculations of a proxy of the subsurface kinetic helicity density show that the helicity does not vary during the solar cycle, and that supergranulation is a likely source of the near-surface helicity.Comment: 17 pages, 10 figures, in "Cartography of the Sun and the Stars", Editors: Rozelot, Jean-Pierre, Neiner, Corali

    Local Helioseismology of Sunspots: Current Status and Perspectives (Invited Review)

    Full text link
    Mechanisms of the formation and stability of sunspots are among the longest-standing and intriguing puzzles of solar physics and astrophysics. Sunspots are controlled by subsurface dynamics hidden from direct observations. Recently, substantial progress in our understanding of the physics of the turbulent magnetized plasma in strong-field regions has been made by using numerical simulations and local helioseismology. Both the simulations and helioseismic measurements are extremely challenging, but it becomes clear that the key to understanding the enigma of sunspots is a synergy between models and observations. Recent observations and radiative MHD numerical models have provided a convincing explanation to the Evershed flows in sunspot penumbrae. Also, they lead to the understanding of sunspots as self-organized magnetic structures in the turbulent plasma of the upper convection zone, which are maintained by a large-scale dynamics. Local helioseismic diagnostics of sunspots still have many uncertainties, some of which are discussed in this review. However, there have been significant achievements in resolving these uncertainties, verifying the basic results by new high-resolution observations, testing the helioseismic techniques by numerical simulations, and comparing results obtained by different methods. For instance, a recent analysis of helioseismology data from the Hinode space mission has successfully resolved several uncertainties and concerns (such as the inclined-field and phase-speed filtering effects) that might affect the inferences of the subsurface wave-speed structure of sunspots and the flow pattern. It becomes clear that for the understanding of the phenomenon of sunspots it is important to further improve the helioseismology methods and investigate the whole life cycle of active regions, from magnetic-flux emergence to dissipation.Comment: 34 pages, 18 figures, submitted to Solar Physic
    • …
    corecore