2,185 research outputs found

    Beyond group-level explanations for the failure of groups to solve hidden profiles: The individual preference effect revisited

    Get PDF
    The individual preference effect supplements the predominant group-level explanations for the failure of groups to solve hidden profiles. Even in the absence of dysfunctional group-level processes, group members tend to stick to their suboptimal initial decision preferences due to preference-consistent evaluation of information. However, previous experiments demonstrating this effect retained two group-level processes, namely (a) social validation of information supporting the group members’ initial preferences and (b) presentation of the additional information in a discussion format. Therefore, it was unclear whether the individual preference effect depends on the co-occurrence of these group-level processes. Here, we report two experiments demonstrating that the individual preference effect is indeed an individual-level phenomenon. Moreover, by a comparison to real interacting groups, we can show that even when all relevant information is exchanged and when no coordination losses occur, almost half of all groups would fail to solve hidden profiles due to the individual preference effect

    Marginal Release Under Local Differential Privacy

    Full text link
    Many analysis and machine learning tasks require the availability of marginal statistics on multidimensional datasets while providing strong privacy guarantees for the data subjects. Applications for these statistics range from finding correlations in the data to fitting sophisticated prediction models. In this paper, we provide a set of algorithms for materializing marginal statistics under the strong model of local differential privacy. We prove the first tight theoretical bounds on the accuracy of marginals compiled under each approach, perform empirical evaluation to confirm these bounds, and evaluate them for tasks such as modeling and correlation testing. Our results show that releasing information based on (local) Fourier transformations of the input is preferable to alternatives based directly on (local) marginals

    Landau-De Gennes theory of nematic liquid\ud crystals: the Oseen-Frank limit and beyond

    Get PDF
    We study global minimizers of a continuum Landau-De Gennes energy functional for nematic liquid crystals, in three-dimensional domains, subject to uniaxial boundary conditions. We analyze the physically relevant limit of small elastic constant and show that global minimizers converge strongly, in W 1,2 , to a global minimizer predicted by the Oseen-Frank theory for uniaxial nematic liquid crystals with constant order parameter. Moreover, the convergence is uniform in the interior of the domain, away from the singularities of the limiting Oseen-Frank global minimizer. We obtain results on the rate of convergence of the eigenvalues and the regularity of the eigenvectors of the Landau-De Gennes global minimizer.\ud \ud \ud We also study the interplay between biaxiality and uniaxiality in Landau-De Gennes global energy minimizers and obtain estimates for various related quantities such as the biaxiality parameter and the size of admissible strongly biaxial regions

    Testing Conditional Independence of Discrete Distributions

    Full text link
    We study the problem of testing \emph{conditional independence} for discrete distributions. Specifically, given samples from a discrete random variable (X,Y,Z)(X, Y, Z) on domain [1]×[2]×[n][\ell_1]\times[\ell_2] \times [n], we want to distinguish, with probability at least 2/32/3, between the case that XX and YY are conditionally independent given ZZ from the case that (X,Y,Z)(X, Y, Z) is ϵ\epsilon-far, in 1\ell_1-distance, from every distribution that has this property. Conditional independence is a concept of central importance in probability and statistics with a range of applications in various scientific domains. As such, the statistical task of testing conditional independence has been extensively studied in various forms within the statistics and econometrics communities for nearly a century. Perhaps surprisingly, this problem has not been previously considered in the framework of distribution property testing and in particular no tester with sublinear sample complexity is known, even for the important special case that the domains of XX and YY are binary. The main algorithmic result of this work is the first conditional independence tester with {\em sublinear} sample complexity for discrete distributions over [1]×[2]×[n][\ell_1]\times[\ell_2] \times [n]. To complement our upper bounds, we prove information-theoretic lower bounds establishing that the sample complexity of our algorithm is optimal, up to constant factors, for a number of settings. Specifically, for the prototypical setting when 1,2=O(1)\ell_1, \ell_2 = O(1), we show that the sample complexity of testing conditional independence (upper bound and matching lower bound) is \[ \Theta\left({\max\left(n^{1/2}/\epsilon^2,\min\left(n^{7/8}/\epsilon,n^{6/7}/\epsilon^{8/7}\right)\right)}\right)\,. \

    Fairness-Aware Ranking in Search & Recommendation Systems with Application to LinkedIn Talent Search

    Full text link
    We present a framework for quantifying and mitigating algorithmic bias in mechanisms designed for ranking individuals, typically used as part of web-scale search and recommendation systems. We first propose complementary measures to quantify bias with respect to protected attributes such as gender and age. We then present algorithms for computing fairness-aware re-ranking of results. For a given search or recommendation task, our algorithms seek to achieve a desired distribution of top ranked results with respect to one or more protected attributes. We show that such a framework can be tailored to achieve fairness criteria such as equality of opportunity and demographic parity depending on the choice of the desired distribution. We evaluate the proposed algorithms via extensive simulations over different parameter choices, and study the effect of fairness-aware ranking on both bias and utility measures. We finally present the online A/B testing results from applying our framework towards representative ranking in LinkedIn Talent Search, and discuss the lessons learned in practice. Our approach resulted in tremendous improvement in the fairness metrics (nearly three fold increase in the number of search queries with representative results) without affecting the business metrics, which paved the way for deployment to 100% of LinkedIn Recruiter users worldwide. Ours is the first large-scale deployed framework for ensuring fairness in the hiring domain, with the potential positive impact for more than 630M LinkedIn members.Comment: This paper has been accepted for publication at ACM KDD 201

    Differentially Private Model Selection with Penalized and Constrained Likelihood

    Full text link
    In statistical disclosure control, the goal of data analysis is twofold: The released information must provide accurate and useful statistics about the underlying population of interest, while minimizing the potential for an individual record to be identified. In recent years, the notion of differential privacy has received much attention in theoretical computer science, machine learning, and statistics. It provides a rigorous and strong notion of protection for individuals' sensitive information. A fundamental question is how to incorporate differential privacy into traditional statistical inference procedures. In this paper we study model selection in multivariate linear regression under the constraint of differential privacy. We show that model selection procedures based on penalized least squares or likelihood can be made differentially private by a combination of regularization and randomization, and propose two algorithms to do so. We show that our private procedures are consistent under essentially the same conditions as the corresponding non-private procedures. We also find that under differential privacy, the procedure becomes more sensitive to the tuning parameters. We illustrate and evaluate our method using simulation studies and two real data examples

    No measure for culture? Value in the new economy

    Get PDF
    This paper explores articulations of the value of investment in culture and the arts through a critical discourse analysis of policy documents, reports and academic commentary since 1997. It argues that in this period, discourses around the value of culture have moved from a focus on the direct economic contributions of the culture industries to their indirect economic benefits. These indirect benefits are discussed here under three main headings: creativity and innovation, employability, and social inclusion. These are in turn analysed in terms of three forms of capital: human, social and cultural. The paper concludes with an analysis of this discursive shift through the lens of autonomist Marxist concerns with the labour of social reproduction. It is our argument that, in contemporary policy discourses on culture and the arts, the government in the UK is increasingly concerned with the use of culture to form the social in the image of capital. As such, we must turn our attention beyond the walls of the factory in order to understand the contemporary capitalist production of value and resistance to it. </jats:p

    Foundation and empire : a critique of Hardt and Negri

    Get PDF
    In this article, Thompson complements recent critiques of Hardt and Negri's Empire (see Finn Bowring in Capital and Class, no. 83) using the tools of labour process theory to critique the political economy of Empire, and to note its unfortunate similarities to conventional theories of the knowledge economy
    corecore