87 research outputs found

    Gastric inhibitory polypeptide receptor: association analyses for obesity of several polymorphisms in large study groups

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gastric inhibitory polypeptide (GIP) is postulated to be involved in type 2 diabetes mellitus and obesity. It exerts its function through its receptor, GIPR. We genotyped three <it>GIPR </it>SNPs (rs8111428, rs2302382 and rs1800437) in German families with at least one obese index patient, two case-control studies and two cross-sectional population-based studies.</p> <p>Methods</p> <p>Genotyping was performed by MALDI-TOF, ARMS-PCR and RFLP. The family-study: 761 German families with at least one extremely obese child or adolescent (n = 1,041) and both parents (n = 1,522). Case-control study: (a) German obese children (n = 333) and (b) obese adults (n = 987) in comparison to 588 adult lean controls. The two cross-sectional population-based studies: KORA (n = 8,269) and SHIP (n = 4,310).</p> <p>Results</p> <p>We detected over-transmission of the A-allele of rs2302382 in the German families (p<sub>TDT-Test </sub>= 0.0089). In the combined case-control sample, we estimated an odd ratio of 1.54 (95%CI 1.09;2.19, p<sub>CA-Test </sub>= 0.014) for homozygotes of the rs2302382 A-allele compared to individuals with no A-allele. A similar trend was found in KORA where the rs2302382 A-allele led to an increase of 0.12 BMI units (p = 0.136). In SHIP, however, the A-allele of rs2302382 was estimated to contribute an average decrease of 0.27 BMI units (p-value = 0.031).</p> <p>Conclusion</p> <p>Our data suggest a potential relevance of <it>GIPR </it>variants for obesity. However, additional studies are warranted in light of the conflicting results obtained in one of the two population-based studies.</p

    Vaccination against GIP for the Treatment of Obesity

    Get PDF
    BACKGROUND: According to the WHO, more than 1 billion people worldwide are overweight and at risk of developing chronic illnesses, including cardiovascular disease, type 2 diabetes, hypertension and stroke. Current therapies show limited efficacy and are often associated with unpleasant side-effect profiles, hence there is a medical need for new therapeutic interventions in the field of obesity. Gastric inhibitory peptide (GIP, also known as glucose-dependent insulinotropic polypeptide) has recently been postulated to link over-nutrition with obesity. In fact GIP receptor-deficient mice (GIPR(-/-)) were shown to be completely protected from diet-induced obesity. Thus, disrupting GIP signaling represents a promising novel therapeutic strategy for the treatment of obesity. METHODOLOGY/PRINCIPAL FINDINGS: In order to block GIP signaling we chose an active vaccination approach using GIP peptides covalently attached to virus-like particles (VLP-GIP). Vaccination of mice with VLP-GIP induced high titers of specific antibodies and efficiently reduced body weight gain in animals fed a high fat diet. The reduction in body weight gain could be attributed to reduced accumulation of fat. Moreover, increased weight loss was observed in obese mice vaccinated with VLP-GIP. Importantly, despite the incretin action of GIP, VLP-GIP-treated mice did not show signs of glucose intolerance. CONCLUSIONS/SIGNIFICANCE: This study shows that vaccination against GIP was safe and effective. Thus active vaccination may represent a novel, long-lasting treatment for obesity. However further preclinical safety/toxicology studies will be required before the therapeutic concept can be addressed in humans

    A Randomized Trial of a Physical Conditioning Program to Enhance the Driving Performance of Older Persons

    Get PDF
    BACKGROUND: As the number of older drivers increases, concern has been raised about the potential safety implications. Flexibility, coordination, and speed of movement have been associated with older drivers’ on road performance. OBJECTIVE: To determine whether a multicomponent physical conditioning program targeted to axial and extremity flexibility, coordination, and speed of movement could improve driving performance among older drivers. DESIGN: Randomized controlled trial with blinded assignment and end point assessment. Participants randomized to intervention underwent graduated exercises; controls received home, environment safety modules. PARTICIPANTS: Drivers, 178, age ≥ 70 years with physical, but without substantial visual (acuity 20/40 or better) or cognitive (Mini Mental State Examination score ≥24) impairments were recruited from clinics and community sources. MEASUREMENTS: On-road driving performance assessed by experienced evaluators in dual-brake equipped vehicle in urban, residential, and highway traffic. Performance rated three ways: (1) 36-item scale evaluating driving maneuvers and traffic situations; (2) evaluator’s overall rating; and (3) critical errors committed. Driving performance reassessed at 3 months by evaluator blinded to treatment group. RESULTS: Least squares mean change in road test scores at 3 months compared to baseline was 2.43 points higher in intervention than control participants (P = .03). Intervention drivers committed 37% fewer critical errors (P = .08); there were no significant differences in evaluator’s overall ratings (P = .29). No injuries were reported, and complaints of pain were rare. CONCLUSIONS: This safe, well-tolerated intervention maintained driving performance, while controls declined during the study period. Having interventions that can maintain or enhance driving performance may allow clinician–patient discussions about driving to adopt a more positive tone, rather than focusing on driving limitation or cessation

    Incretin Receptor Null Mice Reveal Key Role of GLP-1 but Not GIP in Pancreatic Beta Cell Adaptation to Pregnancy

    Get PDF
    Islet adaptations to pregnancy were explored in C57BL6/J mice lacking functional receptors for glucagon-like peptide 1 (GLP-1) and gastric inhibitory polypeptide (GIP). Pregnant wild type mice and GIPRKO mice exhibited marked increases in islet and beta cell area, numbers of medium/large sized islets, with positive effects on Ki67/Tunel ratio favouring beta cell growth and enhanced pancreatic insulin content. Alpha cell area and glucagon content were unchanged but prohormone convertases PC2 and PC1/3 together with significant amounts of GLP-1 and GIP were detected in alpha cells. Knockout of GLP-1R abolished these islet adaptations and paradoxically decreased pancreatic insulin, GLP-1 and GIP. This was associated with abolition of normal pregnancy-induced increases in plasma GIP, L-cell numbers, and intestinal GIP and GLP-1 stores. These data indicate that GLP-1 but not GIP is a key mediator of beta cell mass expansion and related adaptations in pregnancy, triggered in part by generation of intra-islet GLP-1
    corecore