957 research outputs found

    Beyond technology and finance: pay-as-you-go sustainable energy access and theories of social change

    Get PDF
    Two-thirds of people in sub-Saharan Africa lack access to electricity, a precursor of poverty reduction and development. The international community has ambitious commitments in this regard, e.g. the UN's Sustainable Energy for All by 2030. But scholarship has not kept up with policy ambitions. This paper operationalises a sociotechnical transitions perspective to analyse for the first time the potential of new, mobileenabled, pay-as-you-go approaches to financing sustainable energy access, focussing on a case study of pay-as-you-go approaches to financing solar home systems in Kenya. The analysis calls into question the adequacy of the dominant, two-dimensional treatment of sustainable energy access in the literature as a purely financial/technology, economics/ engineering problem (which ignores sociocultural and political considerations) and demonstrates the value of a new research agenda that explicitly attends to theories of social change – even when, as in this paper, the focus is purely on finance. The paper demonstrates that sociocultural considerations cut across the literature's traditional two-dimensional analytic categories (technology and finance) and are material to the likely success of any technological or financial intervention. It also demonstrates that the alignment of new payas- you-go finance approaches with existing sociocultural practices of paying for energy can explain their early success and likely longevity relative to traditional finance approaches

    Multifrequency Observations of Giant Radio Pulses from the Millisecond Pulsar B1937+21

    Full text link
    Giant pulses are short, intense outbursts of radio emission with a power-law intensity distribution that have been observed from the Crab Pulsar and PSR B1937+21. We have undertaken a systematic study of giant pulses from PSR B1937+21 using the Arecibo telescope at 430, 1420, and 2380 MHz. At 430 MHz, interstellar scattering broadens giant pulses to durations of ∌50ÎŒ\sim50 \musecs, but at higher frequencies the pulses are very short, typically lasting only ∌1\sim1-2ÎŒ2 \musecs. At each frequency, giant pulses are emitted only in narrow (\lsim10 \mus) windows of pulse phase located ∌55\sim 55-70ÎŒ70 \musec after the main and interpulse peaks. Although some pulse-to-pulse jitter in arrival times is observed, the mean arrival phase appears stable; a timing analysis of the giant pulses yields precision competitive with the best average profile timing studies. We have measured the intensity distribution of the giant pulses, confirming a roughly power-law distribution with approximate index of -1.8, contributing \gsim0.1% to the total flux at each frequency. We also find that the intensity of giant pulses falls off with a slightly steeper power of frequency than the ordinary radio emission.Comment: 21 pages, 10 Postscript figures; LaTeX with aaspp4.sty and epsf.tex; submitted to Ap

    Statistical Studies of Giant Pulse Emission from the Crab Pulsar

    Full text link
    We have observed the Crab pulsar with the Deep Space Network (DSN) Goldstone 70 m antenna at 1664 MHz during three observing epochs for a total of 4 hours. Our data analysis has detected more than 2500 giant pulses, with flux densities ranging from 0.1 kJy to 150 kJy and pulse widths from 125 ns (limited by our bandwidth) to as long as 100 microseconds, with median power amplitudes and widths of 1 kJy and 2 microseconds respectively. The most energetic pulses in our sample have energy fluxes of approximately 100 kJy-microsecond. We have used this large sample to investigate a number of giant-pulse emission properties in the Crab pulsar, including correlations among pulse flux density, width, energy flux, phase and time of arrival. We present a consistent accounting of the probability distributions and threshold cuts in order to reduce pulse-width biases. The excellent sensitivity obtained has allowed us to probe further into the population of giant pulses. We find that a significant portion, no less than 50%, of the overall pulsed energy flux at our observing frequency is emitted in the form of giant pulses.Comment: 19 pages, 17 figures; to be published in Astrophysical Journa

    Simultaneous Dual Frequency Observations of Giant Pulses from the Crab Pulsar

    Get PDF
    Simultaneous measurements of giant pulses from the Crab pulsar were taken at two widely spaced frequencies using the real-time detection of a giant pulse at 1.4 GHz at the Very Large Array to trigger the observation of that same pulse at 0.6 GHz at a 25-m telescope in Green Bank, WV. Interstellar dispersion of the signals provided the necessary time to communicate the trigger across the country via the Internet. About 70% of the pulses are seen at both 1.4 GHz and 0.6 GHz, implying an emission mechanism bandwidth of at least 0.8 GHz at 1 GHz for pulse structure on time scales of one to ten microseconds. The arrival times at both frequencies display a jitter of 100 microseconds within the window defined by the average main pulse profile and are tightly correlated. This tight correlation places limits on both the emission mechanism and on frequency dependent propagation within the magnetosphere. At 1.4 GHz the giant pulses are resolved into several, closely spaced components. Simultaneous observations at 1.4 GHz and 4.9 GHz show that the component splitting is frequency independent. We conclude that the multiplicity of components is intrinsic to the emission from the pulsar, and reject the hypothesis that this is the result of multiple imaging as the signal propagates through the perturbed thermal plasma in the surrounding nebula. At both 1.4 GHz and 0.6 GHz the pulses are characterized by a fast rise time and an exponential decay time which are correlated. The pulse broadening with its exponential decay form is most likely the result of multipath propagation in intervening ionized gas.Comment: LaTeX, 18 pages, 7 figures, accepted for publication in The Astrophysical Journa

    Multifrequency Radio Observations of the Crab Pulsar

    Get PDF
    Previously unseen profile components of the Crab pulsar have been discovered in a study of the frequency-dependent behavior of its average pulse profile between 0.33 and 8.4 GHz. One new component, 36 degrees ahead of the main pulse at 1.4 GHz, is not coincident with the position of the precursor at lower frequencies. Two additional, flat-spectrum components appear after the interpulse between 1.4 and 8.4 GHz. The normal interpulse undergoes a transition in phase and spectrum by disappearing near 2.7 GHz, and reappearing 10 degrees earlier in phase at 4.8 and 8.4 GHz with a new spectral index. The radio frequency main disappears for frequencies above 4.8 GHz, even though it is seen at infrared, optical, and higher energies. The existence of the additional components at high frequency and the strange, frequency-dependent behavior is unlike anything seen in other pulsars, and cannot easily be explained by emission from a simple dipole field geometry.Comment: 13 pages. Source is single LaTeX file with 3 figures, using aaspp and epsf style files (included). To appear in The Astrophysical Journal, September 1996. Paper can also be found at http://www.ee.nmt.edu
    • 

    corecore