8,081 research outputs found

    Twisted supersymmetry and the topology of theory space

    Get PDF
    We present examples of four dimensional, non-supersymmetric field theories in which ultraviolet supersymmetry breaking effects, such as bose-fermi splittings and the vacuum energy, are suppressed by (α/4π)N(\alpha/4 \pi)^{N}, where α\alpha is a weak coupling factor and NN can be made arbitrarily large. The particle content and interactions of these models are conveniently represented by a graph with sites and links, describing the gauge theory space structure. While the theories are supersymmetric ``locally'' in theory space, supersymmetry can be explicitly broken by topological obstructions.Comment: 9 pages, revtex

    Dynamically Warped Theory Space and Collective Supersymmetry Breaking

    Full text link
    We study deconstructed gauge theories in which a warp factor emerges dynamically and naturally. We present nonsupersymmetric models in which the potential for the link fields has translational invariance, broken only by boundary effects that trigger an exponential profile of vacuum expectation values. The spectrum of physical states deviates exponentially from that of the continuum for large masses; we discuss the effects of such exponential towers on gauge coupling unification. We also present a supersymmetric example in which a warp factor is driven by Fayet-Iliopoulos terms. The model is peculiar in that it possesses a global supersymmetry that remains unbroken despite nonvanishing D-terms. Inclusion of gravity and/or additional messenger fields leads to the collective breaking of supersymmetry and to unusual phenomenology.Comment: 28 pages LaTeX, JHEP format, 7 eps figures (v2: reference added

    The Long Range Gravitational Potential Energy Between Strings

    Get PDF
    We calculate the gravitational potential energy between infinitely long parallel strings with tensions \tau_1 and \tau_2. Classically, it vanishes, but at one loop, we find that the long range gravitational potential energy per unit length is U/L = 24G_N^2\tau_1\tau_2/(5 \pi a^2) + ..., where a is the separation between the strings, G_N is Newton's constant, and we set \hbar = c =1. The ellipses represent terms suppressed by more powers of G_N \tau_i. Typically, massless bulk fields give rise at one loop to a long range potential between p-branes in space-times of dimension p+2+1. The contribution to this potential from bulk scalars is computed for arbitrary p (strings correspond to p=1) and in the case of three-branes its possible relevance for cosmological quintessence is commented on.Comment: 10 pages, 6 figure

    W physics at the ILC with polarized beams as a probe of the Littlest Higgs Model

    Full text link
    We study the possibility of using W pair production and leptonic decay of one of the W's at the ILC with polarized beams as a probe of the Littlest Higgs Model. We consider cross-sections, polarization fractions of the W's, leptonic decay energy and angular distributions, and left-right polarization asymmetry as probes of the model. With parameter values allowed by present experimental constraints detectable effects on these observables at typical ILC energies of 500 GeV and 800 GeV will be present. Beam polarization is further found to enhance the sensitivity.Comment: 17 pages, plain latex, 6 figures, replaced with version accepted by JHEP, typographical errors removed, notation and references improved, new references added, explanation added in appendix regarding beam polarization dependenc

    Gravity in Dynamically Generated Dimensions

    Get PDF
    A theory of gravity in d+1d+1 dimensions is dynamically generated from a theory in dd dimensions. As an application we show how NN dynamically coupled gravity theories can reduce the effective Planck mass.Comment: 7 pages, LaTeX (Revtex

    Little Technicolor

    Full text link
    Inspired by the AdS/CFT correspondence, we show that any G/H symmetry breaking pattern can be described by a simple two-site moose diagram. This construction trivially reproduces the CCWZ prescription in the context of Hidden Local Symmetry. We interpret this moose in a novel way to show that many little Higgs theories can emerge from ordinary chiral symmetry breaking in scaled-up QCD. We apply this reasoning to the simple group little Higgs to see that the same low energy degrees of freedom can arise from a variety of UV complete theories. We also show how models of holographic composite Higgs bosons can turn into brane-localized little technicolor theories by "integrating in" the IR brane.Comment: 26 pages, 2 figures; v2: references added; v3: added section on vacuum alignment to match JHEP versio

    The Minimal Moose for a Little Higgs

    Full text link
    Recently a new class of theories of electroweak symmetry breaking have been constructed. These models, based on deconstruction and the physics of theory space, provide the first alternative to weak-scale supersymmetry with naturally light Higgs fields and perturbative new physics at the TeV scale. The Higgs is light because it is a pseudo-Goldstone boson, and the quadratically divergent contributions to the Higgs mass are cancelled by new TeV scale ``partners'' of the {\em same} statistics. In this paper we present the minimal theory space model of electroweak symmetry breaking, with two sites and four link fields, and the minimal set of fermions. There are very few parameters and degrees of freedom beyond the Standard Model. Below a TeV, we have the Standard Model with two light Higgs doublets, and an additional complex scalar weak triplet and singlet. At the TeV scale, the new particles that cancel the 1-loop quadratic divergences in the Higgs mass are revealed. The entire Higgs potential needed for electroweak symmetry breaking--the quartic couplings as well as the familiar negative mass squared--can be generated by the top Yukawa coupling, providing a novel link between the physics of flavor and electroweak symmetry breaking.Comment: 15 pages. References added. Included clarifying comments on the origin of quartic couplings, and on power-counting. More elegant model for generating Higgs potential from top Yukawa coupling presente

    Horava-Lifshitz Cosmology: A Review

    Full text link
    This article reviews basic construction and cosmological implications of a power-counting renormalizable theory of gravitation recently proposed by Horava. We explain that (i) at low energy this theory does not exactly recover general relativity but instead mimic general relativity plus dark matter; that (ii) higher spatial curvature terms allow bouncing and cyclic universes as regular solutions; and that (iii) the anisotropic scaling with the dynamical critical exponent z=3 solves the horizon problem and leads to scale-invariant cosmological perturbations even without inflation. We also comment on issues related to an extra scalar degree of freedom called scalar graviton. In particular, for spherically-symmetric, static, vacuum configurations we prove non-perturbative continuity of the lambda->1+0 limit, where lambda is a parameter in the kinetic action and general relativity has the value lambda=1. We also derive the condition under which linear instability of the scalar graviton does not show up.Comment: 28 pages, invited review for CQG; version to be published (v2
    corecore