2,986 research outputs found
Strategi Alternatif Manajemen Spektrum dan Penataan Alokasi Pita Frekuensi 1800 MHz untuk Penerapan Teknologi LTE
Trafik pengguna mobile data untuk layanan akses internet senantiasa mengalami peningkatan dari tahun ke tahun terutama untuk penggunaan layanan mobile broadband dibanding dengan layanan fixed broadband. Kenaikan trafik mobile broadband secara eksponensial ini dipicu dengan munculnya berbagai macam aplikasi, android, jejaring sosial dan media content yang ditambah lagi dengan pertumbuhan berbagai macam perangkat smartphone, tablet, dan mobile PC yang menawarkan beraneka ragam fitur dan teknologi terkini. Teknologi LTE (Long Term Evolution) yang di-standarisasi oleh 3GPP (Third Generation Partnership Project) sebagai organisasi standar Internasional merupakan teknologi yang memberikan kecepatan data dan kapasitas yang besar. Dengan akses DL 100 Mbps dan UL 50 Mbps untuk standar teknologi LTE release 8. Sehingga menjadi salah satu solusi untuk mengatasi kenaikan trafik dari pengguna layanan mobile broadband. Dengan menggunakan metodologi dalam tahapan-tahapan pada proses RIA (Regulatory Impact Analysis), hal ini digunakan untuk memilih dan menentukan stategi alternatif tool spectrum management yang dipergunakan dan juga opsi refarming yang paling efektif termasuk dampak dari setiap masing-masing opsi tersebut. Metoda pendekatan voluntary spectrum redeployment dan penerapan netral teknologi yang dilakukan secara transparan dan terbuka melalui konsultasi publik dengan melibatkan stakeholder merupakan strategi alternatif spectrum management yang bisa diterapkan untuk melakukan proses refarming di pita frekuensi 1800 MHz di Indoensia. Dan instrumen spectrum management ini juga digunakan untuk melakukan penataan menyeluruh pita frekuensi 1800 MHz sehingga didapatkan jumlah total lebar bandwidth yang ideal dan kanal alokasi frekuensi yang berdekatan atau contiguous sehingga dapat digunakan dalam penerapan teknologi LTE
Depletion isolation effect in Vertical MOSFETS during transition from partial to fully depleted operation
A simulation study is made of floating-body effects (FBEs) in vertical MOSFETs due to depletion isolation as the pillar thickness is reduced from 200 to 10 nm. For pillar thicknesses between 200–60 nm, the output characteristics with and without impact ionization are identical at a low drain bias and then diverge at a high drain bias. The critical drain bias Vdc for which the increased drain–current is observed is found to decrease with a reduction in pillar thickness. This is explained by the onset of FBEs at progressively lower values of the drain bias due to the merging of the drain depletion regions at the bottom of the pillar (depletion isolation). For pillar thicknesses between 60–10 nm, the output characteristics show the opposite behavior, namely, the critical drain bias increases with a reduction in pillar thickness. This is explained by a reduction in the severity of the FBEs due to the drain debiasing effect caused by the elevated body potential. Both depletion isolation and gate–gate coupling contribute to the drain–current for pillar thicknesses between 100–40 nm
A totally laparoscopic associating liver partition and portal vein ligation for staged hepatectomy assisted with radiofrequency (radiofrequency assisted liver partition with portal vein ligation) for staged liver resection
In order to induce liver hypertrophy to enable liver resection in patients with a small future liver remnant, various methods have been proposed in addition to portal vein embolisation. Most recently, the ALPPS technique has gained significant international interest. This technique is limited by the high morbidity associated with an in-situ liver splitting and the patient undergoing two open operations. We present the case of a variant ALPPS technique performed entirely laparoscopically with no major morbidity or mortality. An increased liver volume of 57.9% was seen after 14 days. This technique is feasible to perform and compares favourably to other ALPPS methods whilst gaining the advantages of laparoscopic surgery
Asymmetric gate induced drain leakage and body leakage in vertical MOSFETs with reduced parasitic capacitance
Vertical MOSFETs, unlike conventional planar MOSFETs, do not have identical structures at the source and drain, but have very different gate overlaps and geometric configurations. This paper investigates the effect of the asymmetric source and drain geometries of surround-gate vertical MOSFETs on the drain leakage currents in the OFF-state region of operation. Measurements of gate-induced drain leakage (GIDL) and body leakage are carried out as a function of temperature for transistors connected in the drain-on-top and drain-on-bottom configurations. Asymmetric leakage currents are seen when the source and drain terminals are interchanged, with the GIDL being higher in the drain-on-bottom configuration and the body leakage being higher in the drain-on-top configuration. Band-to-band tunneling is identified as the dominant leakage mechanism for both the GIDL and body leakage from electrical measurements at temperatures ranging from ?50 to 200?C. The asymmetric body leakage is explained by a difference in body doping concentration at the top and bottom drain–body junctions due to the use of a p-well ion implantation. The asymmetric GIDL is explained by the difference in gate oxide thickness on the vertical (110) pillar sidewalls and the horizontal (100) wafer surface
Depletion-Isolation Effect in Vertical MOSFETs During the Transition From Partial to Fully Depleted Operation
A simulation study is made of floating-body effects (FBEs) in vertical MOSFETs due to depletion isolation as the pillar thickness is reduced from 200 to 10 nm. For pillar thicknesses between 200–60 nm, the output characteristics with and without impact ionization are identical at a low drain bias and then diverge at a high drain bias. The critical drain bias Vdc for which the increased drain–current is observed is found to decrease with a reduction in pillar thickness. This is explained by the onset of FBEs at progressively lower values of the drain bias due to the merging of the drain depletion regions at the bottom of the pillar (depletion isolation). For pillar thicknesses between 60–10 nm, the output characteristics show the opposite behavior, namely, the critical drain bias increases with a reduction in pillar thickness. This is explained by a reduction in the severity of the FBEs due to the drain debiasing effect caused by the elevated body potential. Both depletion isolation and gate–gate coupling contribute to the drain–current for pillar thicknesses between 100–40 nm
- …