616 research outputs found

    Transferrin variation and genetic structure of reindeer populations in Scandinavia

    Get PDF
    Polyacrylamide gel electrophoresis was used to analyse transferrin variation in herds of semi-domestic reindeer from Scandinavia. The results are compared with previously reported values for other populations of both semi-domestic and wild reindeer using the same techniques as in the present study. In all populations the number of alleles was high, ranging from seven to eleven, and the heterozygosity was correspondingly high, with a mean of 0.749. This high genetic variation in all populations suggests that inbreeding is not widespread among Scandinavian reindeer. The pattern of allele frequency distribution indicates a high degree of genetic heterogeneity in the transferrin locus, both between the different semi-domestic herds and between the different wild populations. The mean value of genetic distance was 0.069 between semi-domestic herds and 0.091 between wild populations. Between semi-domestic and wild populations the genetic distance was particularly high, with a mean of 0.188. This high value was mainly due to a different pattern in the distribution of the two most common transferrin alleles: Tfu was most common among semi-domestic herds, while TfEI was most common among wild populations. These differences in transferrin allele distribution are discussed in relation to possible different origins of semi-domestic and wild reindeer in Scandinavia, or alternatively, to different selection forces acting on transferrin genotypes in semi-domestic and wild populations.Transferrin-variasjon og genetisk struktur hos rein i Skandinavia.Abstact in Norwegian / Sammendrag: Transferrin-variasjon i tamreinflokker ble analysert ved hjelp av polyacrylamid gel elektroforese. Resultatene er sammenlignet med verdier som tidligere er beskrevet for både tamrein og villrein hvor det ble benyttet samme metode som i denne undersøkelsen. I alle populasjonene ble det registrert et høyt antall alleler (7-11) og heterozygositeten var tilsvarende høy med en middelverdi på 0.749. Denne høye graden av genetisk variasjon i alle undersøkte populasjoner indikerer at det ikke foregår mye innavl blant rein i Skandinavia. Utbredelsen av de enkelte allelene viste høy grad av genetisk oppdeling i transferrin-locuset mellom flokker av både tamrein og villrein. Middelverdien for genetisk avstand var 0.069 mellom tamreinflokker og 0.091 mellom villreinflokker. Særlig stor genetisk avstand (middelverdi 0.188) ble funnet mellom tamrein og villrein. Denne store forskjellen skyldes i stor grad forskjellig mønster i utbredelsen av de to vanligste allelene: Tf' var mest vanlig blant tamrein og Tf1' var mest vanlig blant villrein. Denne forskjellen er diskutert i relasjon til forskjellig opprinnelse av tamrein og villrein og alternativt, i relasjon til forskjellig seleksjonskrefter som virker på transferrin genotyper i tamrein og villrein

    Passive and active suicidal ideation in a population-based sample of older adults: Associations with polygenic risk scores of relevance for suicidal behavior

    Get PDF
    Introduction: There are few studies investigating genetic factors related to suicidal ideation or behavior in older adult populations. Our aim was to test associations between passive and active suicidal ideation and polygenic risk scores (PRSs) for suicidality and other traits of relevance for suicidality in old age (i.e. depression, neuroticism, loneliness, Alzheimer’s disease, cognitive performance, educational attainment, and several specified vascular diseases) in a population-based sample aged 70 years and older. / Methods: Participants in the prospective H70 study in Gothenburg, Sweden, took part in a psychiatric examination that included the Paykel questions on active and passive suicidal ideation. Genotyping was performed with the Neurochip (Illumina). After quality control of the genetic data the sample included 3467 participants. PRSs for suicidality and other related traits were calculated based on summary statistics from recent GWASs of relevance. Exclusion of persons with dementia or incomplete data on suicidal ideation yielded 3019 participants, age range 70–101 years. Associations between past year suicidal ideation (any level) and selected PRSs were analysed using general estimation equation (GEE) models, adjusted for sex and age. / Results: We observed associations between passive/active suicidal ideation and PRSs for depression (three versions), neuroticism, and general cognitive performance. After excluding individuals with current major depressive disorder (MDD), similar associations were seen with PRS for neuroticism, general cognitive performance and two PRSs for depression. No associations were found between suicidal ideation and PRSs for suicidality, loneliness, Alzheimer’s disease, educational attainment, or vascular disease. / Discussion: Our results could indicate which types of genetic susceptibility that are of importance for suicidality in old age, and these findings can help to shed light on potential mechanisms that may be involved in passive and active suicidal ideation in late-life, also in those with no current MDD. However, due to the limited sample size, the results need to be interpreted with caution until replicated in larger samples

    Atomic Supersymmetry, Rydberg Wave Packets, and Radial Squeezed States

    Get PDF
    We study radial wave packets produced by short-pulsed laser fields acting on Rydberg atoms, using analytical tools from supersymmetry-based quantum-defect theory. We begin with a time-dependent perturbative calculation for alkali-metal atoms, incorporating the atomic-excitation process. This provides insight into the general wave packet behavior and demonstrates agreement with conventional theory. We then obtain an alternative analytical description of a radial wave packet as a member of a particular family of squeezed states, which we call radial squeezed states. By construction, these have close to minimum uncertainty in the radial coordinates during the first pass through the outer apsidal point. The properties of radial squeezed states are investigated, and they are shown to provide a description of certain aspects of Rydberg atoms excited by short-pulsed laser fields. We derive expressions for the time evolution and the autocorrelation of the radial squeezed states, and we study numerically and analytically their behavior in several alkali-metal atoms. Full and fractional revivals are observed. Comparisons show agreement with other theoretical results and with experiment.Comment: published in Physical Review

    Semiconducting Monolayer Materials as a Tunable Platform for Excitonic Solar Cells

    Get PDF
    The recent advent of two-dimensional monolayer materials with tunable optoelectronic properties and high carrier mobility offers renewed opportunities for efficient, ultra-thin excitonic solar cells alternative to those based on conjugated polymer and small molecule donors. Using first-principles density functional theory and many-body calculations, we demonstrate that monolayers of hexagonal BN and graphene (CBN) combined with commonly used acceptors such as PCBM fullerene or semiconducting carbon nanotubes can provide excitonic solar cells with tunable absorber gap, donor-acceptor interface band alignment, and power conversion efficiency, as well as novel device architectures. For the case of CBN-PCBM devices, we predict the limit of power conversion efficiencies to be in the 10 - 20% range depending on the CBN monolayer structure. Our results demonstrate the possibility of using monolayer materials in tunable, efficient, polymer-free thin-film solar cells in which unexplored exciton and carrier transport regimes are at play.Comment: 7 pages, 5 figure

    Mechanical and Electronic Properties of MoS2_2 Nanoribbons and Their Defects

    Get PDF
    We present our study on atomic, electronic, magnetic and phonon properties of one dimensional honeycomb structure of molybdenum disulfide (MoS2_2) using first-principles plane wave method. Calculated phonon frequencies of bare armchair nanoribbon reveal the fourth acoustic branch and indicate the stability. Force constant and in-plane stiffness calculated in the harmonic elastic deformation range signify that the MoS2_2 nanoribbons are stiff quasi one dimensional structures, but not as strong as graphene and BN nanoribbons. Bare MoS2_2 armchair nanoribbons are nonmagnetic, direct band gap semiconductors. Bare zigzag MoS2_2 nanoribbons become half-metallic as a result of the (2x1) reconstruction of edge atoms and are semiconductor for minority spins, but metallic for the majority spins. Their magnetic moments and spin-polarizations at the Fermi level are reduced as a result of the passivation of edge atoms by hydrogen. The functionalization of MoS2_2 nanoribbons by adatom adsorption and vacancy defect creation are also studied. The nonmagnetic armchair nanoribbons attain net magnetic moment depending on where the foreign atoms are adsorbed and what kind of vacancy defect is created. The magnetization of zigzag nanoribbons due to the edge states is suppressed in the presence of vacancy defects.Comment: 11 pages, 5 figures, first submitted at November 23th, 200

    Unified Treatment of Asymptotic van der Waals Forces

    Full text link
    In a framework for long-range density-functional theory we present a unified full-field treatment of the asymptotic van der Waals interaction for atoms, molecules, surfaces, and other objects. The only input needed consists of the electron densities of the interacting fragments and the static polarizability or the static image plane, which can be easily evaluated in a ground-state density-functional calculation for each fragment. Results for separated atoms, molecules, and for atoms/molecules outside surfaces are in agreement with those of other, more elaborate, calculations.Comment: 6 pages, 5 figure

    Graphite and Hexagonal Boron-Nitride Possess the Same Interlayer Distance. Why?

    Full text link
    Graphite and hexagonal boron nitride (h-BN) are two prominent members of the family of layered materials possessing a hexagonal lattice. While graphite has non-polar homo-nuclear C-C intra-layer bonds, h-BN presents highly polar B-N bonds resulting in different optimal stacking modes of the two materials in bulk form. Furthermore, the static polarizabilities of the constituent atoms considerably differ from each other suggesting large differences in the dispersive component of the interlayer bonding. Despite these major differences both materials present practically identical interlayer distances. To understand this finding, a comparative study of the nature of the interlayer bonding in both materials is presented. A full lattice sum of the interactions between the partially charged atomic centers in h-BN results in vanishingly small monopolar electrostatic contributions to the interlayer binding energy. Higher order electrostatic multipoles, exchange, and short-range correlation contributions are found to be very similar in both materials and to almost completely cancel out by the Pauli repulsions at physically relevant interlayer distances resulting in a marginal effective contribution to the interlayer binding. Further analysis of the dispersive energy term reveals that despite the large differences in the individual atomic polarizabilities the hetero-atomic B-N C6 coefficient is very similar to the homo-atomic C-C coefficient in the hexagonal bulk form resulting in very similar dispersive contribution to the interlayer binding. The overall binding energy curves of both materials are thus very similar predicting practically the same interlayer distance and very similar binding energies.Comment: 18 pages, 5 figures, 2 table

    Non-linear response of a Kondo system: Perturbation approach to the time dependent Anderson impurity model

    Full text link
    Nonlinear tunneling current through a quantum dot (an Anderson impurity system) subject to both constant and alternating electric fields is studied in the Kondo regime. A systematic diagram technique is developed for perturbation study of the current in physical systems out of equilibrium governed by time - dependent Hamiltonians of the Anderson and the Kondo models. The ensuing calculations prove to be too complicated for the Anderson model, and hence, a mapping on an effective Kondo problem is called for. This is achieved by constructing a time - dependent version of the Schrieffer - Wolff transformation. Perturbation expansion of the current is then carried out up to third order in the Kondo coupling J yielding a set of remarkably simple analytical expressions for the current. The zero - bias anomaly of the direct current differential conductance is shown to be suppressed by the alternating field while side peaks develop at finite source - drain voltage. Both the direct component and the first harmonics of the time - dependent response are equally enhanced due to the Kondo effect, while amplitudes of higher harmonics are shown to be relatively small. A zero alternating bias anomaly is found in the alternating current differential conductance, that is, it peaks around zero alternating bias. This peak is suppressed by the constant bias. No side peaks show up in the differential alternating - conductance but their counterpart is found in the derivative of the alternating current with respect to the direct bias. The results pertaining to nonlinear response are shown to be valid also below the Kondo temperature.Comment: 55 latex pages 11 ps figure

    FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded

    Get PDF
    An easy-to-use, versatile and freely available graphic web server, FoldIndex is described: it predicts if a given protein sequence is intrinsically unfolded implementing the algorithm of Uversky and co-workers, which is based on the average residue hydrophobicity and net charge of the sequence. FoldIndex has an error rate comparable to that of more sophisticated fold prediction methods. Sliding windows permit identification of large regions within a protein that possess folding propensities different from those of the whole protein
    corecore