413 research outputs found

    Possible magnetic field variability during the 6.7 GHz methanol maser flares of G09.62+0.20

    Full text link
    (Abridged) Recently, the magnetic field induced Zeeman splitting was measured for the strongest known 6.7 GHz methanol maser, which arises in the massive star forming region G09.62+0.20. This maser is one of a handful of periodically flaring methanol masers. The 100-m Effelsberg telescope was used to monitor the 6.7 GHz methanol masers of G09.62+0.20. With the exception of a two week period during the peak of the maser flare, we measure a constant magnetic field of B_||~11+-2 mG in the two strongest maser components of G09.62+0.20 that are separated by over 200 AU. In the two week period that coincides exactly with the peak of the maser flare of the strongest maser feature, we measure a sharp decrease and possible reversal of the Zeeman splitting. The exact cause of both maser and polarization variability is still unclear, but it could be related to either background amplification of polarized emission or the presence of a massive protostar with a close-by companion. Alternatively, the polarization variability could be caused by non-Zeeman effects related to the radiative transfer of polarized maser emission.Comment: 4 pages, 3 figures, accepted for publication Astronomy and Astrophysic

    KAT-7 Science Verification: Using HI Observations of NGC 3109 to Understand its Kinematics and Mass Distribution

    Full text link
    HI observations of the Magellanic-type spiral NGC 3109, obtained with the seven dish Karoo Array Telescope (KAT-7), are used to analyze its mass distribution. Our results are compared to what is obtained using VLA data. KAT-7 is the precursor of the SKA pathfinder MeerKAT, which is under construction. The short baselines and low system temperature of the telescope make it sensitive to large scale low surface brightness emission. The new observations with KAT-7 allow the measurement of the rotation curve of NGC 3109 out to 32', doubling the angular extent of existing measurements. A total HI mass of 4.6 x 10^8 Msol is derived, 40% more than what was detected by the VLA observations. The observationally motivated pseudo-isothermal dark matter (DM) halo model can reproduce very well the observed rotation curve but the cosmologically motivated NFW DM model gives a much poorer fit to the data. While having a more accurate gas distribution has reduced the discrepancy between the observed RC and the MOdified Newtonian Dynamics (MOND) models, this is done at the expense of having to use unrealistic mass-to-light ratios for the stellar disk and/or very large values for the MOND universal constant a0. Different distances or HI contents cannot reconcile MOND with the observed kinematics, in view of the small errors on those two quantities. As for many slowly rotating gas-rich galaxies studied recently, the present result for NGC 3109 continues to pose a serious challenge to the MOND theory.Comment: 25 pages, 20 figures, accepted for publication in Astronomical Journa

    Kinetics of recruitment and allosteric activation of ARHGEF25 isoforms by the heterotrimeric G-protein Gαq

    Get PDF
    Rho GTPases are master regulators of the eukaryotic cytoskeleton. The activation of Rho GTPases is governed by Rho guanine nucleotide exchange factors (GEFs). Three RhoGEF isoforms are produced by the gene ARHGEF25; p63RhoGEF580, GEFT and a recently discovered longer isoform of 619 amino acids (p63RhoGEF619). The subcellular distribution of p63RhoGEF580 and p63RhoGEF619 is strikingly different in unstimulated cells, p63RhoGEF580 is located at the plasma membrane and p63RhoGEF619 is confined to the cytoplasm. Interestingly, we find that both P63RhoGEF580 and p63RhoGEF619 activate RhoGTPases to a similar extent after stimulation of Gαq coupled GPCRs. Furthermore, we show that p63RhoGEF619 relocates to the plasma membrane upon activation of Gαq coupled GPCRs, resembling the well-known activation mechanism of RhoGEFs activated by Gα12/13. Synthetic recruitment of p63RhoGEF619 to the plasma membrane increases RhoGEF activity towards RhoA, but full activation requires allosteric activation via Gαq. Together, these findings reveal a dual role for Gαq in RhoGEF activation, as it both recruits and allosterically activates cytosolic ARHGEF25 isoforms

    The balance between Gα<sub>i</sub>-Cdc42/Rac and Gα<sub>12/13</sub>-RhoA pathways determines endothelial barrier regulation by sphingosine-1-phosphate

    Get PDF
    The bioactive sphingosine-1-phosphatephosphate (S1P) is present in plasma, bound to carrier proteins, and involved in many physiological processes, including angiogenesis, inflammatory responses, and vascular stabilization. S1P can bind to several G-protein-coupled receptors (GPCRs) activating a number of different signaling networks. At present, the dynamics and relative importance of signaling events activated immediately downstream of GPCR activation are unclear. To examine these, we used a set of fluorescence resonance energy transfer-based biosensors for different RhoGTPases (Rac1, RhoA/B/C, and Cdc42) as well as for heterotrimeric G-proteins in a series of live-cell imaging experiments in primary human endothelial cells. These experiments were accompanied by biochemical GTPase activity assays and transendothelial resistance measurements. We show that S1P promotes cell spreading and endothelial barrier function through S1PR1-Gαi-Rac1 and S1PR1-Gαi-Cdc42 pathways. In parallel, a S1PR2-Gα12/13-RhoA pathway is activated that can induce cell contraction and loss of barrier function, but only if Gαi-mediated signaling is suppressed. Our results suggest that Gαq activity is not involved in S1P-mediated regulation of barrier integrity. Moreover, we show that early activation of RhoA by S1P inactivates Rac1 but not Cdc42, and vice versa. Together, our data show that the rapid S1P-induced increase in endothelial integrity is mediated by a S1PR1-Gαi-Cdc42 pathwa

    A Strong Jet Signature in the Late-Time Lightcurve of GW170817

    Get PDF
    We present new 0.6-10 GHz observations of the binary neutron star merger GW170817 covering the period up to 300 days post-merger, taken with the Karl G. Jansky Very Large Array, the Australia Telescope Compact Array, the Giant Metrewave Radio Telescope and the MeerKAT telescope. We use these data to precisely characterize the decay phase of the late-time radio light curve. We find that the temporal decay is consistent with a power-law slope of t^-2.2, and that the transition between the power-law rise and decay is relatively sharp. Such a slope cannot be produced by a quasi-isotropic (cocoon-dominated) outflow, but is instead the classic signature of a relativistic jet. This provides strong observational evidence that GW170817 produced a successful jet, and directly demonstrates the link between binary neutron star mergers and short-hard GRBs. Using simple analytical arguments, we derive constraints on the geometry and the jet opening angle of GW170817. These results are consistent with those from our companion Very Long Baseline Interferometry (VLBI) paper, reporting superluminal motion in GW170817.Comment: 11 pages, 3 figures, 3 tables. Accepted for publication in ApJ Letter
    • …
    corecore