16 research outputs found

    Relationship between the anti-inflammatory properties of salmeterol/fluticasone and the expression of CD4+CD25+Foxp3+ regulatory T cells in COPD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Salmeterol and fluticasone combination (SFC) has anti-inflammatory effects and improves clinical symptoms in patients with chronic obstructive pulmonary disease (COPD). However, the anti-inflammatory mechanism of SFC remains unclear. In this study, we investigated the inflammatory responses of COPD, as well as the relationship of the inflammatory factors with the levels of CD4<sup>+</sup>CD25<sup>+</sup>Foxp3<sup>+ </sup>regulatory T cells (Foxp3<sup>+</sup>Tregs) after SFC therapy.</p> <p>Methods</p> <p>Twenty-one patients with moderate or severe COPD received treatment with 50/500 μg of SFC twice a day for 12 weeks. Before and after treatment, the patients were evaluated using the Modified Medical Research Council (MMRC) dyspnea scale and by conducting a 6-min walk test. The number of neutrophils, monocytes and lymphocytes in induced sputum were counted. Levels of cytokines, including pre-inflammatory IL-8, TNF-α, IL-17A and cytokine IL-10, in the sputum supernatant and peripheral blood were measured by ELISA. The proportion of Foxp3<sup>+</sup>Tregs in the total CD4<sup>+ </sup>T cell of the peripheral blood was determined by flow cytometry. The relationship between IL-17A levels and the percentage of Foxp3<sup>+</sup>Tregs was analyzed by statistical analysis.</p> <p>Results</p> <p>After treatment with SFC, the forced expiratory volume in 1 s as a percentage of predicted values (FEV1%) and the 6-min walk distance in the COPD patients significantly increased, while dyspnea scores decreased. The total number of cells, neutrophils, and the percentage of neutrophils in induced sputum reduced notably, while the proportion of monocytes was significantly increased. Levels of the inflammatory cytokines IL-8, TNF-α, and IL-17A in the sputum supernatant and in the blood were markedly lowered, while IL-10 levels were unchanged. The proportion of Foxp3<sup>+</sup>Tregs in the total CD4<sup>+</sup>T cell population in the peripheral blood was drastically higher than that before treatment. The level of IL-17A was negatively correlated with the proportion of Foxp3<sup>+</sup>Tregs in CD4<sup>+</sup>T cells.</p> <p>Conclusion</p> <p>SFC can reduce the levels of inflammatory factors and improve symptoms of COPD. The levels of inflammatory factors are associated with the variation of Foxp3<sup>+</sup>Tregs in COPD.</p> <p>Trial registration</p> <p>This study was registered with <url>http://www.chictr.org</url> (Chinese Clinical Trial Register) as follows: ChiCTR-TNC-10001270</p

    Time-Dependent Subcellular Distribution and Effects of Carbon Nanotubes in Lungs of Mice

    Get PDF
    BACKGROUND AND METHODS:Pulmonary deposited carbon nanotubes (CNTs) are cleared very slowly from the lung, but there is limited information on how CNTs interact with the lung tissue over time. To address this, three different multiwalled CNTs were intratracheally instilled into female C57BL/6 mice: one short (850 nm) and tangled, and two longer (4 μm and 5.7 μm) and thicker. We assessed the cellular interaction with these CNTs using transmission electron microscopy (TEM) 1, 3 and 28 days after instillation. RESULTS:TEM analysis revealed that the three CNTs followed the same overall progression pattern over time. Initially, CNTs were taken up either by a diffusion mechanism or via endocytosis. Then CNTs were agglomerated in vesicles in macrophages. Lastly, at 28 days post-exposure, evidence suggesting CNT escape from vesicle enclosures were found. The longer and thicker CNTs more often perturbed and escaped vesicular enclosures in macrophages compared to the smaller CNTs. Bronchoalveolar lavage (BAL) showed that the CNT exposure induced both an eosinophil influx and also eosinophilic crystalline pneumonia. CONCLUSION:Two very different types of multiwalled CNTs had very similar pattern of cellular interactions in lung tissue, with the longer and thicker CNTs resulting in more severe effects in terms of eosinophil influx and incidence of eosinophilic crystalline pneumonia (ECP)

    Azaphilones from an Acid Mine Extremophile Strain of a <i>Pleurostomophora</i> sp.

    No full text
    An extremophilic fungus identified as a <i>Pleurostomophora</i> sp. was isolated from the Berkeley Pit, an acid mine waste lake. When grown in liquid culture, the fungus produced berkchaetoazaphilones A–C (<b>1</b>, <b>2</b>, and <b>5</b>), the red pigment berkchaetorubramine (<b>6</b>), and the known compound 4-(hydroxymethyl)­quinoline. These compounds were evaluated as inhibitors of matrix metalloproteinase-3, caspase-1, and proinflammatory cytokine production in induced THP-1 cells. Berkchaetoazaphilone B (<b>2</b>) inhibited IL-1β, TNFα, and IL-6 production in the induced inflammasome assay and was cytotoxic toward human retinoblastoma cell line Y79 (IC<sub>50</sub> = 1.1 μM), leukemia cell lines CCRF-CEM and SR, and the melanoma cell line LOX IMVI (IC<sub>50</sub> = 10 μM)

    <b>IL-33 mediates multi-walled carbon nanotube (MWCNT)-induced airway hyper-reactivity via the mobilization of innate helper cells in the lung</b>

    No full text
    Allergic asthma is a chronic inflammatory disorder of the airway associated with bronchial obstruction, airway hyper-reactivity (AHR), and mucus production. The epithelium may direct and propagate asthmatic-like responses. Central to this theory is the observation that viruses, air pollution, and allergens promote epithelial damage and trigger the generation of IL-25, IL-33, and TSLP via innate pathways such as TLRs and purinergic receptors. Similarly, engineered nanomaterials promote a Th2-associated pathophysiology. In this study, we tested the hypothesis that instillation of multi-walled carbon nanotubes (MWCNT) impair pulmonary function in C57Bl/6 mice due to the development of IL-33-dependent Th2-associated inflammation. MWCNT exposure resulted in elevated levels of IL-33 in the lavage fluid (likely originating from airway epithelial cells), enhanced AHR, eosinophil recruitment, and production of Th2-associated cytokines and chemokines. Moreover, these events were dependent on IL-13 signaling and the IL-33/ST2 axis, but independent of T and B cells. Finally, MWCNT exposure resulted in the recruitment of innate lymphoid cells. Collectively, our data suggest that MWCNT induce epithelial damage that results in release of IL-33, which in turn promotes innate lymphoid cell recruitment and the development of IL-13-dependent inflammatory response.</p
    corecore