40 research outputs found

    Deletion of LBR N-terminal domains recapitulates Pelger-Huet anomaly phenotypes in mouse without disrupting X chromosome inactivation

    Get PDF
    Mutations in the gene encoding Lamin B receptor (LBR), a nuclear-membrane protein with sterol reductase activity, have been linked to rare human disorders. Phenotypes range from a benign blood disorder, such as Pelger-Huet anomaly (PHA), affecting the morphology and chromatin organization of white blood cells, to embryonic lethality as for Greenberg dysplasia (GRBGD). Existing PHA mouse models do not fully recapitulate the human phenotypes, hindering efforts to understand the molecular etiology of this disorder. Here we show, using CRISPR/Cas-9 gene editing technology, that a 236bp N-terminal deletion in the mouse Lbr gene, generating a protein missing the N-terminal domains of LBR, presents a superior model of human PHA. Further, we address recent reports of a link between Lbr and defects in X chromosome inactivation (XCI) and show that our mouse mutant displays minor X chromosome inactivation defects that do not lead to any overt phenotypes in vivo. We suggest that our N-terminal deletion model provides a valuable pre-clinical tool to the research community and will aid in further understanding the etiology of PHA and the diverse functions of LBR

    Lamin B receptor: Interplay between structure, function and localization

    No full text
    Lamin B receptor (LBR) is an integral protein of the inner nuclear membrane, containing a hydrophilic N-terminal end protruding into the nucleoplasm, eight hydrophobic segments that span the membrane and a short, nucleoplasmic C-terminal tail. Two seemingly unrelated functions have been attributed to LBR. Its N-terminal domain tethers heterochromatin to the nuclear periphery, thus contributing to the shape of interphase nuclear architecture, while its transmembrane domains exhibit sterol reductase activity. Mutations within the transmembrane segments result in defects in cholesterol synthesis and are associated with diseases such as the Pelger–Huët anomaly and Greenberg skeletal dysplasia, whereas no such harmful mutations related to the anchoring properties of LBR have been reported so far. Recent evidence suggests a dynamic regulation of LBR expression levels, structural organization, localization and function, in response to various signals. The molecular mechanisms underlying this dynamic behavior have not yet been fully unraveled. Here, we provide an overview of the current knowledge of the interplay between the structure, function and localization of LBR, and hint at the interconnection of the two distinct functions of LBR. © 2017 by the authors. Licensee MDPI, Basel, Switzerland

    Distribution of SRPK1 in human brain

    No full text
    Extensive alternative splicing is observed in the mammalian nervous system providing for protein diversity and specificity to accomplish the complex neuronal functions. Mechanisms underlying neuron specific splicing are not yet well understood. Among the factors regulating splicing of major importance are serine/arginine protein kinases (SRPKs) that phosphorylate SR splicing factors. SRPK1 is known to be expressed in the mammalian central nervous system. The present immunohistochemical study reveals a region- and neuron-specific localization of SRPK1 in human brain. The potential involvement of the kinase in the regulation of alternative splicing of various neuronal proteins is discussed. © 2011 Elsevier B.V

    Evidence for disulfide bonds in SR Protein Kinase 1 (SRPK1) that are required for activity and nuclear localization

    No full text
    Serine/arginine protein kinases (SRPKs) phosphorylate Arg/Ser dipeptide-containing proteins that play crucial roles in a broad spectrum of basic cellular processes. The existence of a large internal spacer sequence that separates the bipartite kinase catalytic core is a unique structural feature of SRPKs. Previous structural studies on a catalytically active fragment of SRPK1, which lacks the main part of the spacer domain, revealed that SRPK1 remains in an active state without any post-translational modifications or specific intra-protein interactions, while the spacer domain is depicted as a loop structure, outside the kinase core. Using systematic mutagenesis we now provide evidence that replacement of any individual cysteine residue in the spacer, apart from Cys414, or in its proximal flaking ends of the two kinase catalytic domains has an impact on kinase activity. Furthermore, the cysteine residues are critical for nuclear translocation of SRPK1 in response to genotoxic stress and SRPK1-dependent splicing of a reporter gene. While replacement of Cys207, Cys502 and Cys539 of the catalytic domains is predicted to distort the kinase active structure, our findings suggest that Cys356, Cys386, Cys427 and Cys455 of the spacer domain and Cys188 of the first catalytic domain are engaged in disulfide bridging. We propose that such a network of intramolecular disulfide bonds mediates the bending of the spacer region thus allowing the proximal positioning of the two catalytic subunits which is a prerequisite for SRPK1 activity. © 2017 Koutroumani et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Cloning and characterization of an alternatively spliced form of SR protein kinase 1 that interacts specifically with scaffold attachment factor-B

    No full text
    Serine/arginine protein kinases have been conserved throughout evolution and are thought to play important roles in the regulation of mRNA processing, nuclear import, germline development, polyamine transport, and ion homeostasis. Human SRPK1, which was first identified as a kinase specific for the SR family of splicing factors, is located on chromosome 6p21.2-p21.3. We report here the cloning and characterization of SRPK1a, which is encoded by an alternatively processed transcript derived from the SRPK1 gene. SRPK1a contains an insertion of 171 amino acids at its NH2-terminal domain and is similar to SRPK1 in substrate specificity and subcellular localization. Moreover, both isoforms can induce alternative splicing of human tau exon 10 in transfected cells. Using the yeast two-hybrid assay, we found that the extended NH2-terminal domain of SRPK1a interacts with Scaffold Attachment Factor-B, a nuclear scaffold-associated protein. Confirmation of this interaction was provided by in, vitro binding assays, as well as by co-immunoprecipitation from 293T cells doubly transfected with SRPK1a and SAF-B. Our studies suggest that different SRPK family members are uniquely regulated and targeted and thus the multiple SRPK kinases present in higher eukaryotes may perform specialized and differentiable functions

    Deletion of LBR N-terminal domains recapitulates Pelger-Huet anomaly phenotypes in mouse without disrupting X chromosome inactivation

    Get PDF
    Mutations in the gene encoding Lamin B receptor (LBR), a nuclear-membrane protein with sterol reductase activity, have been linked to rare human disorders. Phenotypes range from a benign blood disorder, such as Pelger-Huet anomaly (PHA), affecting the morphology and chromatin organization of white blood cells, to embryonic lethality as for Greenberg dysplasia (GRBGD). Existing PHA mouse models do not fully recapitulate the human phenotypes, hindering efforts to understand the molecular etiology of this disorder. Here we show, using CRISPR/Cas-9 gene editing technology, that a 236bp N-terminal deletion in the mouse Lbr gene, generating a protein missing the N-terminal domains of LBR, presents a superior model of human PHA. Further, we address recent reports of a link between Lbr and defects in X chromosome inactivation (XCI) and show that our mouse mutant displays minor X chromosome inactivation defects that do not lead to any overt phenotypes in vivo. We suggest that our N-terminal deletion model provides a valuable pre-clinical tool to the research community and will aid in further understanding the etiology of PHA and the diverse functions of LBR.ISSN:2399-364
    corecore