52 research outputs found

    Anticitrullinated protein antibody (ACPA) in rheumatoid arthritis: influence of an interaction between HLA-DRB1 shared epitope and a deletion polymorphism in glutathione s-transferase in a cross-sectional study

    Get PDF
    Abstract Introduction A deletion polymorphism in glutathione S-transferase Mu-1 (GSTM1-null) has previously been implicated to play a role in rheumatoid arthritis (RA) risk and progression, although no prior investigations have examined its associations with anticitrullinated protein antibody (ACPA) positivity. The purpose of this study was to examine the associations of GSTM1-null with ACPA positivity in RA and to assess for evidence of interaction between GSTM1 and HLA-DRB1 shared epitope (SE). Methods Associations of GSTM1-null with ACPA positivity were examined separately in two RA cohorts, the Veterans Affairs Rheumatoid Arthritis (VARA) registry (n = 703) and the Study of New-Onset RA (SONORA; n = 610). Interactions were examined by calculating an attributable proportion (AP) due to interaction. Results A majority of patients in the VARA registry (76%) and SONORA (69%) were positive for ACPA with a similar frequency of GSTM1-null (53% and 52%, respectively) and HLA-DRB1 SE positivity (76% and 71%, respectively). The parameter of patients who had ever smoked was more common in the VARA registry (80%) than in SONORA (65%). GSTM1-null was significantly associated with ACPA positivity in the VARA registry (odds ratio (OR), 1.45; 95% confidence interval (CI), 1.02 to 2.05), but not in SONORA (OR, 1.00; 95% CI, 0.71 to 1.42). There were significant additive interactions between GSTM1 and HLA-DRB1 SE in the VARA registry (AP, 0.49; 95% CI, 0.21 to 0.77; P < 0.001) in ACPA positivity, an interaction replicated in SONORA (AP, 0.38; 95% CI, 0.00 to 0.76; P = 0.050). Conclusions This study is the first to show that the GSTM1-null genotype, a common genetic variant, exerts significant additive interaction with HLA-DRB1 SE on the risk of ACPA positivity in RA. Since GSTM1 has known antioxidant functions, these data suggest that oxidative stress may be important in the development of RA-specific autoimmunity in genetically susceptible individuals

    Children, access and learning Resource-based learning and the impacts of environment and learning cultures

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:5188.5155F(119) / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Speckle tracking echocardiographically-based analysis of ventricular strain in children: An intervendor comparison

    No full text
    Background: Strain and synchrony can be calculated from a variety of software packages, but there is a paucity of data with inter-vendor comparisons in children. To test the hypothesis that different packages may affect results, independent of acquisition, we compared values obtained using two commercially available analysis tool (QLAB and TomTec), with several different settings. Methods: The study population included 108 children; patients were divided into three groups: (1) normal cardiac structure and conduction; (2) ventricular paced rhythm; and (3) flattened ventricular septum (reflecting right ventricular pressure or volume load lesions). We analyzed the same image acquired from the apical 4-chamber (AP4) and short-axis at the mid-papillary level (SAXM) views in both QLAB (versions 10.5 and 10.8) and TomTec (version 1.2). In QLAB version 10.8, low, medium, and high quantification smoothness settings were employed. In TomTec, images were analyzed with both low and high frame rates. Tracking quality for each package was graded. AP4 and SAXM strain and synchrony values were recorded. A mixed-effects linear regression model was used, with main effect considered significant if the p-value was < 0.05. Results: Tracking scores were high for all packages except QLAB 10.5 in the SAXM view. AP4 and SAXM strain values varied significantly between QLAB 10.5 and the other packages. Synchrony values varied widely for all strain values (p < 0.001 for both) in all packages. Quantification smoothness changes in QLAB 10.8 did not impact strain significantly in any patient group; temporal resolution changes in TomTec resulted in strain differences in children with flat ventricular septums, but not those with normal or ventricular paced hearts. Conclusion: Synchrony values varied substantially among all packages in children. Strain values varied widely between QLAB 10.5 and all other software packages, recommending avoidance of QLAB 10.5 for future studies. Quantification smoothness settings in QLAB 10.8 resulted in minimal strain differences. In TomTec, low and high frame rate strain values differed only in a subset of patients (flattened septum). These data suggest that reliable comparisons between strain values derived from QLAB and TomTec is possible in certain cases, but that caution should be used especially in different hemodynamics conditions
    • …
    corecore