247 research outputs found

    Phonons in a one-dimensional microfluidic crystal

    Full text link
    The development of a general theoretical framework for describing the behaviour of a crystal driven far from equilibrium has proved difficult1. Microfluidic crystals, formed by the introduction of droplets of immiscible fluid into a liquid-filled channel, provide a convenient means to explore and develop models to describe non-equilibrium dynamics2, 3, 4, 5, 6, 7, 8, 9, 10, 11. Owing to the fact that these systems operate at low Reynolds number (Re), in which viscous dissipation of energy dominates inertial effects, vibrations are expected to be over-damped and contribute little to their dynamics12, 13, 14. Against such expectations, we report the emergence of collective normal vibrational modes (equivalent to acoustic 'phonons') in a one-dimensional microfluidic crystal of water-in-oil droplets at Reapprox10-4. These phonons propagate at an ultra-low sound velocity of approx100 mum s-1 and frequencies of a few hertz, exhibit unusual dispersion relations markedly different to those of harmonic crystals, and give rise to a variety of crystal instabilities that could have implications for the design of commercial microfluidic systems. First-principles theory shows that these phonons are an outcome of the symmetry-breaking flow field that induces long-range inter-droplet interactions, similar in nature to those observed in many other systems including dusty plasma crystals15, 16, vortices in superconductors17, 18, active membranes19 and nucleoprotein filaments20.Comment: https://www.weizmann.ac.il/complex/tlusty/papers/NaturePhys2006.pd

    Phase transition and landscape statistics of the number partitioning problem

    Full text link
    The phase transition in the number partitioning problem (NPP), i.e., the transition from a region in the space of control parameters in which almost all instances have many solutions to a region in which almost all instances have no solution, is investigated by examining the energy landscape of this classic optimization problem. This is achieved by coding the information about the minimum energy paths connecting pairs of minima into a tree structure, termed a barrier tree, the leaves and internal nodes of which represent, respectively, the minima and the lowest energy saddles connecting those minima. Here we apply several measures of shape (balance and symmetry) as well as of branch lengths (barrier heights) to the barrier trees that result from the landscape of the NPP, aiming at identifying traces of the easy/hard transition. We find that it is not possible to tell the easy regime from the hard one by visual inspection of the trees or by measuring the barrier heights. Only the {\it difficulty} measure, given by the maximum value of the ratio between the barrier height and the energy surplus of local minima, succeeded in detecting traces of the phase transition in the tree. In adddition, we show that the barrier trees associated with the NPP are very similar to random trees, contrasting dramatically with trees associated with the pp spin-glass and random energy models. We also examine critically a recent conjecture on the equivalence between the NPP and a truncated random energy model

    Use of a porous membrane for gas bubble removal in microfluidic channels: physical mechanisms and design criteria

    Full text link
    We demonstrate and explain a simple and efficient way to remove gas bubbles from liquid-filled microchannels, by integrating a hydrophobic porous membrane on top of the microchannel. A prototype chip is manufactured in hard, transparent polymer with the ability to completely filter gas plugs out of a segmented flow at rates up to 7.4 microliter/s per mm2 of membrane area. The device involves a bubble generation section and a gas removal section. In the bubble generation section, a T-junction is used to generate a train of gas plugs into a water stream. These gas plugs are then transported towards the gas removal section, where they slide along a hydrophobic membrane until complete removal. The system has been successfully modeled and four necessary operating criteria have been determined to achieve a complete separation of the gas from the liquid. The first criterion is that the bubble length needs to be larger than the channel diameter. The second criterion is that the gas plug should stay on the membrane for a time sufficient to transport all the gas through the membrane. The third criterion is that the gas plug travel speed should be lower than a critical value: otherwise a stable liquid film between the bubble and the membrane prevents mass transfer. The fourth criterion is that the pressure difference across the membrane should not be larger than the Laplace pressure to prevent water from leaking through the membrane

    Geometric and Statistical Properties of the Mean-Field HP Model, the LS Model and Real Protein Sequences

    Get PDF
    Lattice models, for their coarse-grained nature, are best suited for the study of the ``designability problem'', the phenomenon in which most of the about 16,000 proteins of known structure have their native conformations concentrated in a relatively small number of about 500 topological classes of conformations. Here it is shown that on a lattice the most highly designable simulated protein structures are those that have the largest number of surface-core switchbacks. A combination of physical, mathematical and biological reasons that causes the phenomenon is given. By comparing the most foldable model peptides with protein sequences in the Protein Data Bank, it is shown that whereas different models may yield similar designabilities, predicted foldable peptides will simulate natural proteins only when the model incorporates the correct physics and biology, in this case if the main folding force arises from the differing hydrophobicity of the residues, but does not originate, say, from the steric hindrance effect caused by the differing sizes of the residues.Comment: 12 pages, 10 figure

    Detection of Naegleria Species in Environmental Samples from Peninsular Malaysia

    Get PDF
    In Malaysia, researchers and medical practitioners are unfamiliar with Naegleria infections. Thus little is known about the existence of pathogenic Naegleria fowleri, and the resultant primary amoebic meningoencephalitis (PAM) is seldom included in the differential diagnosis of central nervous system infections. This study was conducted to detect the presence of Naegleria species in various environmental samples.A total of 41 Naegleria-like isolates were isolated from water and dust samples. All these isolates were subjected to PCR using two primer sets designed from the ITS1-ITS2 regions. The N. fowleri species-specific primer set failed to produce the expected amplicon. The Naegleria genus-specific primers produced amplicons of 408 bp (35), 450 bp (2), 457 bp (2) or 381 bp (2) from all 41 isolates isolated from aquatic (33) and dust (8) samples. Analysis of the sequences from 10 representative isolates revealed that amplicons with fragments 408, 450 and 457 bp showed homology with non-pathogenic Naegleria species, and 381 bp showed homology with Vahlkampfia species. These results concurred with the morphological observation that all 39 isolates which exhibited flagella were Naegleria, while 2 isolates (AC7, JN034055 and AC8, JN034056) that did not exhibit flagella were Vahlkampfia species.To date, pathogenic species of N. fowleri have not been isolated from Malaysia. All 39 isolates that produced amplicons (408, 450 and 457 bp) from the genus-specific primers were identified as being similar to nonpathogenic Naegleria. Amplicon 408 bp from 5 representative isolates showed 100% and 99.7% identity to Naegleria philippinensis isolate RJTM (AM167890) and is thus believed to be the most common species in our environment. Amplicons 450 bp and 457 bp were respectively believed to be from 2 new species of Naegleria, since representative isolates showed lower homology and had a longer base pair length when compared to the reference species in the Genbank, Naegleria schusteri (AJ566626) and Naegleria laresi (AJ566630), respectively

    Nanofluids Research: Key Issues

    Get PDF
    Nanofluids are a new class of fluids engineered by dispersing nanometer-size structures (particles, fibers, tubes, droplets) in base fluids. The very essence of nanofluids research and development is to enhance fluid macroscopic and megascale properties such as thermal conductivity through manipulating microscopic physics (structures, properties and activities). Therefore, the success of nanofluid technology depends very much on how well we can address issues like effective means of microscale manipulation, interplays among physics at different scales and optimization of microscale physics for the optimal megascale properties. In this work, we take heat-conduction nanofluids as examples to review methodologies available to effectively tackle these key but difficult problems and identify the future research needs as well. The reviewed techniques include nanofluids synthesis through liquid-phase chemical reactions in continuous-flow microfluidic microreactors, scaling-up by the volume averaging and constructal design with the constructal theory. The identified areas of future research contain microfluidic nanofluids, thermal waves and constructal nanofluids

    CFD analysis of microchannel emulsification: Droplet generation process and size effect of asymmetric straight flow-through microchannels

    Get PDF
    This is the author’s version of a work that was accepted for publication in Chemical Engineering Science. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Chemical Engineering Science, Volume 66, Issue 22, DOI 10.1016/j.ces.2011.07.061Asymmetric straight flow-through microchannel (MC) arrays are high-performance MC emulsification devices for stable mass production of uniform droplets. This paper presents computational fluid dynamics (CFD) simulation and analysis of the generation of soybean oil-in-water emulsion droplets via asymmetric straight flow-through MCs, each consisting of a microslot and a narrow MC. We also used CFD to investigate the effects of the channel size and the flow of the dispersed phase on MC emulsification using asymmetric straight flow-through MCs with a characteristic channel size of 5 to 400 μm. The overall shape of an oil-water interface and the time scale during droplet generation via a control asymmetric straight flow-through MC were appropriately simulated. Better insight was obtained on the flow profile of the two phases and the internal pressure balance of the dispersed phase during droplet generation. Comparison of the CFD and experiment results also provided insight into dynamic interfacial tension during droplet generation. Successful droplet generation was observed below a critical dispersed-phase velocity. In this case, the resultant droplet size was proportional to the channel size and was not sensitive to the dispersed-phase velocity applied. The maximum droplet generation rate per channel was inversely proportional to the channel size, unless the buoyancy force did not promote droplet detachment. The maximum droplet productivity per unit area of an asymmetric straight flow-through MC array was estimated to be constant, regardless of channel size

    Phase Synchronization of fluid-fluid interfaces as hydrodynamically coupled oscillators

    Get PDF
    Hydrodynamic interactions play a role in synchronized motions of coupled oscillators in fluids, and understanding the mechanism will facilitate development of applications in fluid mechanics. For example, synchronization phenomenon in two-phase flow will benefit the design of future microfluidic devices, allowing spatiotemporal control of microdroplet generation without additional integration of control elements. In this work, utilizing a characteristic oscillation of adjacent interfaces between two immiscible fluids in a microfluidic platform, we discover that the system can act as a coupled oscillator, notably showing spontaneous in-phase synchronization of droplet breakup. With this observation of in-phase synchronization, the coupled droplet generator exhibits a complete set of modes of coupled oscillators, including out-of-phase synchronization and nonsynchronous modes. We present a theoretical model to elucidate how a negative feedback mechanism, tied to the distance between the interfaces, induces the in-phase synchronization. We also identify the criterion for the transition from in-phase to out-of-phase oscillations
    corecore