382 research outputs found
Free energy cascade in gyrokinetic turbulence
In gyrokinetic theory, the quadratic nonlinearity is known to play an
important role in the dynamics by redistributing (in a conservative fashion)
the free energy between the various active scales. In the present study, the
free energy transfer is analyzed for the case of ion temperature gradient
driven turbulence. It is shown that it shares many properties with the energy
transfer in fluid turbulence. In particular, one finds a forward (from large to
small scales), extremely local, and self-similar cascade of free energy in the
plane perpendicular to the background magnetic field. These findings shed light
on some fundamental properties of plasma turbulence, and encourage the
development of large eddy simulation techniques for gyrokinetics.Comment: 4 pages, 2 Postscript figure
Gyrokinetic Large Eddy Simulations
The Large Eddy Simulation (LES) approach is adapted to the study of plasma
microturbulence in a fully three-dimensional gyrokinetic system. Ion
temperature gradient driven turbulence is studied with the {\sc GENE} code for
both a standard resolution and a reduced resolution with a model for the
sub-grid scale turbulence. A simple dissipative model for representing the
effect of the sub-grid scales on the resolved scales is proposed and tested.
Once calibrated, the model appears to be able to reproduce most of the features
of the free energy spectra for various values of the ion temperature gradient
Benchmark of quasi-linear models against gyrokinetic single scale simulations in deuterium and tritium plasmas for a JET high beta hybrid discharge
A benchmark of the reduced quasi-linear models QuaLiKiz and TGLF with GENE gyrokinetic simulations has been performed for parameters corresponding to a JET high performance hybrid pulse in deuterium. Given the importance of the study of such advanced scenarios in view of ITER and DEMO operations, the dependence of the transport on the ion isotope mass has also been assessed, by repeating the benchmark changing the ion isotope to tritium. TGLF agrees better with GENE on the linear spectra and the flux levels. However, concerning the isotope dependence, only QuaLiKiz reproduces the GENE radial trend of a basically gyro-Bohm (gB) scaling at inner radii and instead anti-gB at outer radii. The physics effects which are responsible of the antigB effect in GENE simulations have been singled out
- …