2,665 research outputs found

    On the ill/well-posedness and nonlinear instability of the magneto-geostrophic equations

    Full text link
    We consider an active scalar equation that is motivated by a model for magneto-geostrophic dynamics and the geodynamo. We prove that the non-diffusive equation is ill-posed in the sense of Hadamard in Sobolev spaces. In contrast, the critically diffusive equation is well-posed. In this case we give an example of a steady state that is nonlinearly unstable, and hence produces a dynamo effect in the sense of an exponentially growing magnetic field.Comment: We have modified the definition of Lipschitz well-posedness, in order to allow for a possible loss in regularity of the solution ma

    Emergence of fractal behavior in condensation-driven aggregation

    Full text link
    We investigate a model in which an ensemble of chemically identical Brownian particles are continuously growing by condensation and at the same time undergo irreversible aggregation whenever two particles come into contact upon collision. We solved the model exactly by using scaling theory for the case whereby a particle, say of size xx, grows by an amount αx\alpha x over the time it takes to collide with another particle of any size. It is shown that the particle size spectra of such system exhibit transition to dynamic scaling c(x,t)∼t−βϕ(x/tz)c(x,t)\sim t^{-\beta}\phi(x/t^z) accompanied by the emergence of fractal of dimension df=11+2αd_f={{1}\over{1+2\alpha}}. One of the remarkable feature of this model is that it is governed by a non-trivial conservation law, namely, the dfthd_f^{th} moment of c(x,t)c(x,t) is time invariant regardless of the choice of the initial conditions. The reason why it remains conserved is explained by using a simple dimensional analysis. We show that the scaling exponents β\beta and zz are locked with the fractal dimension dfd_f via a generalized scaling relation β=(1+df)z\beta=(1+d_f)z.Comment: 8 pages, 6 figures, to appear in Phys. Rev.

    "Peeling property" for linearized gravity in null coordinates

    Get PDF
    A complete description of the linearized gravitational field on a flat background is given in terms of gauge-independent quasilocal quantities. This is an extension of the results from gr-qc/9801068. Asymptotic spherical quasilocal parameterization of the Weyl field and its relation with Einstein equations is presented. The field equations are equivalent to the wave equation. A generalization for Schwarzschild background is developed and the axial part of gravitational field is fully analyzed. In the case of axial degree of freedom for linearized gravitational field the corresponding generalization of the d'Alembert operator is a Regge-Wheeler equation. Finally, the asymptotics at null infinity is investigated and strong peeling property for axial waves is proved.Comment: 27 page

    Hadamard States and Adiabatic Vacua

    Full text link
    Reversing a slight detrimental effect of the mailer related to TeXabilityComment: 10pages, LaTeX (RevTeX-preprint style

    Quantum mechanics on a circle: Husimi phase space distributions and semiclassical coherent state propagators

    Get PDF
    We discuss some basic tools for an analysis of one-dimensionalquantum systems defined on a cyclic coordinate space. The basic features of the generalized coherent states, the complexifier coherent states are reviewed. These states are then used to define the corresponding (quasi)densities in phase space. The properties of these generalized Husimi distributions are discussed, in particular their zeros.Furthermore, the use of the complexifier coherent states for a semiclassical analysis is demonstrated by deriving a semiclassical coherent state propagator in phase space.Comment: 29 page

    The self-consistent gravitational self-force

    Full text link
    I review the problem of motion for small bodies in General Relativity, with an emphasis on developing a self-consistent treatment of the gravitational self-force. An analysis of the various derivations extant in the literature leads me to formulate an asymptotic expansion in which the metric is expanded while a representative worldline is held fixed; I discuss the utility of this expansion for both exact point particles and asymptotically small bodies, contrasting it with a regular expansion in which both the metric and the worldline are expanded. Based on these preliminary analyses, I present a general method of deriving self-consistent equations of motion for arbitrarily structured (sufficiently compact) small bodies. My method utilizes two expansions: an inner expansion that keeps the size of the body fixed, and an outer expansion that lets the body shrink while holding its worldline fixed. By imposing the Lorenz gauge, I express the global solution to the Einstein equation in the outer expansion in terms of an integral over a worldtube of small radius surrounding the body. Appropriate boundary data on the tube are determined from a local-in-space expansion in a buffer region where both the inner and outer expansions are valid. This buffer-region expansion also results in an expression for the self-force in terms of irreducible pieces of the metric perturbation on the worldline. Based on the global solution, these pieces of the perturbation can be written in terms of a tail integral over the body's past history. This approach can be applied at any order to obtain a self-consistent approximation that is valid on long timescales, both near and far from the small body. I conclude by discussing possible extensions of my method and comparing it to alternative approaches.Comment: 44 pages, 4 figure

    The Well-posedness of the Null-Timelike Boundary Problem for Quasilinear Waves

    Full text link
    The null-timelike initial-boundary value problem for a hyperbolic system of equations consists of the evolution of data given on an initial characteristic surface and on a timelike worldtube to produce a solution in the exterior of the worldtube. We establish the well-posedness of this problem for the evolution of a quasilinear scalar wave by means of energy estimates. The treatment is given in characteristic coordinates and thus provides a guide for developing stable finite difference algorithms. A new technique underlying the approach has potential application to other characteristic initial-boundary value problems.Comment: Version to appear in Class. Quantum Gra

    A lower bound for nodal count on discrete and metric graphs

    Full text link
    According to a well-know theorem by Sturm, a vibrating string is divided into exactly N nodal intervals by zeros of its N-th eigenfunction. Courant showed that one half of Sturm's theorem for the strings applies to the theory of membranes: N-th eigenfunction cannot have more than N domains. He also gave an example of a eigenfunction high in the spectrum with a minimal number of nodal domains, thus excluding the existence of a non-trivial lower bound. An analogue of Sturm's result for discretizations of the interval was discussed by Gantmacher and Krein. The discretization of an interval is a graph of a simple form, a chain-graph. But what can be said about more complicated graphs? It has been known since the early 90s that the nodal count for a generic eigenfunction of the Schrodinger operator on quantum trees (where each edge is identified with an interval of the real line and some matching conditions are enforced on the vertices) is exact too: zeros of the N-th eigenfunction divide the tree into exactly N subtrees. We discuss two extensions of this result in two directions. One deals with the same continuous Schrodinger operator but on general graphs (i.e. non-trees) and another deals with discrete Schrodinger operator on combinatorial graphs (both trees and non-trees). The result that we derive applies to both types of graphs: the number of nodal domains of the N-th eigenfunction is bounded below by N-L, where L is the number of links that distinguish the graph from a tree (defined as the dimension of the cycle space or the rank of the fundamental group of the graph). We also show that if it the genericity condition is dropped, the nodal count can fall arbitrarily far below the number of the corresponding eigenfunction.Comment: 15 pages, 4 figures; Minor corrections: added 2 important reference
    • …
    corecore