5,269 research outputs found
Force instrumentation for cryogenic wind tunnels using one-piece strain-gage balances
The use of cryogenic temperatures in wind tunnels to achieve high Reynolds numbers has imposed a harsh operating environment on the force balance. Laboratory tests were conducted to study the effect cryogenic temperatures have on balance materials, gages, wiring, solder, adhesives, and moisture proofing. Wind tunnel tests were conducted using a one piece three component balance to verify laboratory results. These initial studies indicate that satisfactory force data can be obtained under steady state conditions
Assessing self-responsibility in employability competencies development among Australian engineering students: introductory report
Self-responsibility study initially outlined the importance of ‘self-directed Adult learning’ either as the method or
the outcome of education. Attention was given to the different interest of individual’s in accepting responsibility for their
professional development. In this regard, several sources reveal the need for learners to take their own responsibility for
developing employability competencies development. However, the concern must be expressed at the incompleteness of research
into the personal responsibility for competency development
Automatic force balance calibration system
A system for automatically calibrating force balances is provided. The invention uses a reference balance aligned with the balance being calibrated to provide superior accuracy while minimizing the time required to complete the calibration. The reference balance and the test balance are rigidly attached together with closely aligned moment centers. Loads placed on the system equally effect each balance, and the differences in the readings of the two balances can be used to generate the calibration matrix for the test balance. Since the accuracy of the test calibration is determined by the accuracy of the reference balance and current technology allows for reference balances to be calibrated to within .+-.0.05%, the entire system has an accuracy of a .+-.0.2%. The entire apparatus is relatively small and can be mounted on a movable base for easy transport between test locations. The system can also accept a wide variety of reference balances, thus allowing calibration under diverse load and size requirements
The construction and evaluation of four series of lessons to stimulate the flow of ideas in the creative writing of fourth, fifth, and sixth grade pupils.
Thesis (Ed.M.)--Boston Universit
Aerodynamic force measurements with a strain-gage balance in a cryogenic wind tunnel
Aerodynamic force measurements on a generalized 75 deg delta wing model with sharp leading edges were made with a three component internal strain gage balance in a cryogenic wind tunnel at stagnation temperatures of 300 K, 200 K, and 110 K. The feasibility of using a strain gage balance without thermal control in a cryogenic environment as well as the use of electrical resistance heaters, an insulator between the model and the balance, and a convection shield on the balance was investigated. Force and moment data on the delta wing model as measured by the balance are compared at the different temperatures while holding constant either the Reynolds number or the tunnel stagnation pressure. Tests were made at Mach numbers of 0.3 and 0.5 and at angles of attack up to 29 deg. The results indicate that it is feasible to acquire accurate force and moment data while operating at steady state thermal conditions in a cryogenic wind tunnel, either with or without electrical heaters on the balance. Within the limits of the balance accuracy, there were no apparent Reynolds number effects on the aerodynamic results for the delta wind model
Strain gage balances and buffet gages
One-piece strain gage force balances were developed for use in the National Transonic Facility (NTF). This was accomplished by studying the effects of the cryogenic environment on materials, strain gages, cements, solders, and moisture proofing agents, and selecting those that minimized strain gage output changes due to temperature. In addition, because of the higher loads that may be imposed by the NTF, these balances are designed to carry a larger load for a given diameter than conventional balances. Full cryogenic calibrations were accomplished, and wind tunnel results that were obtained from the Langley 0-3-Meter Transonic Cryogenic Tunnel were used to verify laboratory test results
Strain Gauge Balance Calibration and Data Reduction at NASA Langley Research Center
This paper will cover the standard force balance calibration and data reduction techniques used at Langley Research Center. It will cover balance axes definition, balance type, calibration instrumentation, traceability of standards to NIST, calibration loading procedures, balance calibration mathematical model, calibration data reduction techniques, balance accuracy reporting, and calibration frequency
An EEG-based study of discrete isometric and isotonic human lower limb muscle contractions
Abstract
Background
Electroencephalography (EEG) combined with independent component analysis enables functional neuroimaging in dynamic environments including during human locomotion. This type of functional neuroimaging could be a powerful tool for neurological rehabilitation. It could enable clinicians to monitor changes in motor control related cortical dynamics associated with a therapeutic intervention, and it could facilitate noninvasive electrocortical control of devices for assisting limb movement to stimulate activity dependent plasticity. Understanding the relationship between electrocortical dynamics and muscle activity will be helpful for incorporating EEG-based functional neuroimaging into clinical practice. The goal of this study was to use independent component analysis of high-density EEG to test whether we could relate electrocortical dynamics to lower limb muscle activation in a constrained motor task. A secondary goal was to assess the trial-by-trial consistency of the electrocortical dynamics by decoding the type of muscle action.
Methods
We recorded 264-channel EEG while 8 neurologically intact subjects performed isometric and isotonic, knee and ankle exercises at two different effort levels. Adaptive mixture independent component analysis (AMICA) parsed EEG into models of underlying source signals. We generated spectrograms for all electrocortical source signals and used a naïve Bayesian classifier to decode exercise type from trial-by-trial time-frequency data.
Results
AMICA captured different electrocortical source distributions for ankle and knee tasks. The fit of single-trial EEG to these models distinguished knee from ankle tasks with 80% accuracy. Electrocortical spectral modulations in the supplementary motor area were significantly different for isometric and isotonic tasks (p < 0.05). Isometric contractions elicited an event related desynchronization (ERD) in the α-band (8–12 Hz) and β-band (12–30 Hz) at joint torque onset and offset. Isotonic contractions elicited a sustained α- and β-band ERD throughout the trial. Classifiers based on supplementary motor area sources achieved a 4-way classification accuracy of 69% while classifiers based on electrocortical sources in multiple brain regions achieved a 4-way classification accuracy of 87%.
Conclusions
Independent component analysis of EEG reveals unique spatial and spectro-temporal electrocortical properties for different lower limb motor tasks. Using a broad distribution of electrocortical signals may improve classification of human lower limb movements from single-trial EEG.http://deepblue.lib.umich.edu/bitstream/2027.42/112617/1/12984_2011_Article_362.pd
Space-efficient Feature Maps for String Alignment Kernels
String kernels are attractive data analysis tools for analyzing string data.
Among them, alignment kernels are known for their high prediction accuracies in
string classifications when tested in combination with SVM in various
applications. However, alignment kernels have a crucial drawback in that they
scale poorly due to their quadratic computation complexity in the number of
input strings, which limits large-scale applications in practice. We address
this need by presenting the first approximation for string alignment kernels,
which we call space-efficient feature maps for edit distance with moves
(SFMEDM), by leveraging a metric embedding named edit sensitive parsing (ESP)
and feature maps (FMs) of random Fourier features (RFFs) for large-scale string
analyses. The original FMs for RFFs consume a huge amount of memory
proportional to the dimension d of input vectors and the dimension D of output
vectors, which prohibits its large-scale applications. We present novel
space-efficient feature maps (SFMs) of RFFs for a space reduction from O(dD) of
the original FMs to O(d) of SFMs with a theoretical guarantee with respect to
concentration bounds. We experimentally test SFMEDM on its ability to learn SVM
for large-scale string classifications with various massive string data, and we
demonstrate the superior performance of SFMEDM with respect to prediction
accuracy, scalability and computation efficiency.Comment: Full version for ICDM'19 pape
The Collaborative Cross: A Systems Genetics Resource for Studying Host-Pathogen Interactions
Host genetic variation plays an important role in shaping infectious disease susceptibility. Noll et al. review the application of a genetically diverse mouse reference population, the Collaborative Cross, to study variation in disease response across multiple pathogens, highlighting advances in model development and genetic mapping. © 2019 Elsevier Inc.Host genetic variation has a major impact on infectious disease susceptibility. The study of pathogen resistance genes, largely aided by mouse models, has significantly advanced our understanding of infectious disease pathogenesis. The Collaborative Cross (CC), a newly developed multi-parental mouse genetic reference population, serves as a tractable model system to study how pathogens interact with genetically diverse populations. In this review, we summarize progress utilizing the CC as a platform to develop improved models of pathogen-induced disease and to map polymorphic host response loci associated with variation in susceptibility to pathogens
- …