262,870 research outputs found
Detector measures power in 50 to 30,000 GHz radiation band
Broadband power detector assembly measures electromagnetic radiation in the 50 to 30,000 GHz band. The assembly includes a matched pair of detectors which incorporate thin-film radiation absorbers. The detector is effective with either coherent or incoherent radiation
Integrable SU(m|n) supersymmetric electronic models of strong correlations
We generalize the SU(2|2) supersymmetric extended Hubbard model of 1/r2
interaction to the SU(m|n) supersymmetric case. Integrable models may be
defined on both uniform lattice and non-uniform one dimensional lattices. We
study both cases in detail and present the ground state wavefunctions and
energy spectra of these models.Comment: 24 pages, Late
Fast mode of rotating atoms in one-dimensional lattice rings
We study the rotation of atoms in one-dimensional lattice rings. In
particular, the "fast mode", where the ground state atoms rotate faster than
the stirring rotating the atoms, is studied both analytically and numerically.
The conditions for the transition to the fast mode are found to be very
different from that in continuum rings. We argue that these transition
frequencies remain unchanged for bosonic condensates described in a mean field.
We show that Fermionic interaction and filling factor have a significant effect
on the transition to the fast mode, and Pauli principle may suppress it
altogether.Comment: 4 pages, 5 figure
Symmetric Composite Laminate Stress Analysis
It is demonstrated that COSMIC/NASTRAN may be used to analyze plate and shell structures made of symmetric composite laminates. Although general composite laminates cannot be analyzed using NASTRAN, the theoretical development presented herein indicates that the integrated constitutive laws of a symmetric composite laminate resemble those of a homogeneous anisotropic plate, which can be analyzed using NASTRAN. A detailed analysis procedure is presented, as well as an illustrative example
Controlled quantum teleportation and secure direct communication
We present a controlled quantum teleportation protocol. In the protocol,
quantum information of an unknown state of a 2-level particle is faithfully
transmitted from a sender (Alice) to a remote receiver (Bob) via an initially
shared triplet of entangled particles under the control of the supervisor
Charlie. The distributed entangled particles shared by Alice, Bob and Charlie
function as a quantum information channel for faithful transmission. We also
propose a controlled and secure direct communication scheme by means of this
teleportation. After insuring the security of the quantum channel, Alice
encodes the secret message directly on a sequence of particle states and
transmits them to Bob supervised by Charlie using this controlled quantum
teleportation. Bob can read out the encoded message directly by the measurement
on his qubit. In this scheme, the controlled quantum teleportation transmits
Alice's message without revealing any information to a potential eavesdropper.
Because there is not a transmission of the qubit carrying the secret message
between Alice and Bob in the public channel, it is completely secure for
controlled and direct secret communication if perfect quantum channel is used.
The feature of this scheme is that the communication between two sides depends
on the agreement of the third side.Comment: 4 page
Electrospinning of poly(ethylene-co-vinyl alcohol) nanofibres encapsulated with Ag nanoparticles for skin wound healing
Copyright © 2011 Chao Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Skin wound healing is an urgent problem in clinics and military activities. Although significant advances have been made in its treatment, there are several challenges associated with traditional methods, for example, limited donor skin tissue for transplantation and inflammation during long-term healing time. To address these challenges, in this study we present a method to fabricate Poly(ethylene-co-vinyl alcohol) (EVOH) nanofibres encapsulated with Ag nanoparticle using electrospinning technique. The fibres were fabricated with controlled diameters (59nm-3m) by regulating three main parameters, that is, EVOH solution concentration, the electric voltage, and the distance between the injection needle tip (high-voltage point) and the fibre collector. Ag was added to the nanofibres to offer long-term anti-inflammation effect by slow release of Ag nanoparticles through gradual degradation of EVOH nanofibre. The method developed here could lead to new dressing materials for treatment of skin wounds. © 2011 Chao Xu et al.The work was partially supported by the National Natural Science Foundation of China (nos. 10825210, 10872157, and 31050110125) and the National 111 Project of China (no. B06024)
- …