20 research outputs found

    Cold-Adapted Signal Proteins: NMR Structures of Pheromones from the Antarctic Ciliate Euplotes nobilii

    Get PDF
    Cell type-specific signal proteins, known as pheromones, are synthesized by ciliated protozoa in association with their self/nonself mating-type systems, and are utilized to control the vegetative growth and mating stages of their life cycle. In species of the most ubiquitous ciliate, Euplotes, these pheromones form families of structurally homologous molecules, which are constitutively secreted into the extracellular environment, from where they can be isolated in sufficient amounts for chemical characterization. This paper describes the NMR structures of En-1 and En-2, which are members of the cold-adapted pheromone family produced by Euplotes nobilii, a species inhabiting the freezing coastal waters of Antarctica. The structures were determined with the proteins from the natural source, using homonuclear 1H NMR techniques in combination with automated NOESY peak picking and NOE assignment. En-1 and En-2 have highly homologous global folds, which consist of a central three-a-helix bundle with an up-down-up topology and a 310-helical turn near the N-terminus. This fold is stabilized by four disulfide bonds and the helices are connected by bulging loops. Apparent structural specificity resides in the variable C-terminal regions of the pheromones.TheNMRstructures ofEn-1 and En-2 provide novel insights into the cold-adaptive modifications that distinguish the E. nobilii pheromone family from the closely related E. raikovi pheromone family isolated from temperate waters

    In-Cell Biochemistry Using NMR Spectroscopy

    Get PDF
    Biochemistry and structural biology are undergoing a dramatic revolution. Until now, mostly in vitro techniques have been used to study subtle and complex biological processes under conditions usually remote from those existing in the cell. We developed a novel in-cell methodology to post-translationally modify interactor proteins and identify the amino acids that comprise the interaction surface of a target protein when bound to the post-translationally modified interactors. Modifying the interactor proteins causes structural changes that manifest themselves on the interacting surface of the target protein and these changes are monitored using in-cell NMR. We show how Ubiquitin interacts with phosphorylated and non-phosphorylated components of the receptor tyrosine kinase (RTK) endocytic sorting machinery: STAM2 (Signal-transducing adaptor molecule), Hrs (Hepatocyte growth factor regulated substrate) and the STAM2-Hrs heterodimer. Ubiquitin binding mediates the processivity of a large network of interactions required for proper functioning of the RTK sorting machinery. The results are consistent with a weakening of the network of interactions when the interactor proteins are phosphorylated. The methodology can be applied to any stable target molecule and may be extended to include other post-translational modifications such as ubiquitination or sumoylation, thus providing a long-awaited leap to high resolution in cell biochemistry
    corecore