2,002 research outputs found
Buckling without bending: a new paradigm in morphogenesis
A curious feature of organ and organoid morphogenesis is that in certain
cases, spatial oscillations in the thickness of the growing "film" are
out-of-phase with the deformation of the slower-growing "substrate," while in
other cases, the oscillations are in-phase. The former cannot be explained by
elastic bilayer instability, and contradict the notion that there is a
universal mechanism by which brains, intestines, teeth, and other organs
develop surface wrinkles and folds. Inspired by the microstructure of the
embryonic cerebellum, we develop a new model of 2d morphogenesis in which
system-spanning elastic fibers endow the organ with a preferred radius, while a
separate fiber network resides in the otherwise fluid-like film at the outer
edge of the organ and resists thickness gradients thereof. The tendency of the
film to uniformly thicken or thin is described via a "growth potential".
Several features of cerebellum, +blebbistatin organoid, and retinal fovea
morphogenesis, including out-of-phase behavior and a film thickness amplitude
that is comparable to the radius amplitude, are readily explained by our simple
analytical model, as may be an observed scale-invariance in the number of folds
in the cerebellum. We also study a nonlinear variant of the model, propose
further biological and bio-inspired applications, and address how our model is
and is not unique to the developing nervous system.Comment: version accepted by Physical Review
Spatial and Temporal Patterns of Mercury Accumulation in Lacustrine Sediments across the Laurentian Great Lakes Region
Data from 104 sediment cores from the Great Lakes and “inland lakes” in the region were compiled to assess historical and recent changes in mercury (Hg) deposition. The lower Great Lakes showed sharp increases in Hg loading c. 1850-1950 from point-source water dischargers, with marked decreases during the past half century associated with effluent controls and decreases in the industrial use of Hg. In contrast, Lake Superior and inland lakes exhibited a pattern of Hg loading consistent with an atmospheric source - gradual increases followed by recent (post-1980) decreases. Variation in sedimentary Hg flux among inland lakes was primarily attributed to the ratio of watershed area: lake area, and secondarily to a lake’s proximity to emission sources. A consistent region-wide decrease (~20%) of sediment Hg flux suggests that controls on local and regional atmospheric Hg emissions have been effective in decreasing the supply of Hg to Lake Superior and inland lakes
Norbornene chaotropic salts as low molecular mass ionic organogelators (LMIOGs)
Phenylalanine functionalised norbornene (9:Na) functions as a potent, low molecular-mass (MW = 333 Da) ionic organogelator with a minimum gelating concentration of 0.5 wt% in THF, i-PrOH, 1,4-dioxane and n-BuOH. Fibrous crystals form in the gel and X-ray crystallography identified a cation mediated helical assembly process controlled by the chirality of the phenylalanine. In additon to excellent gelating properties 9:Na readily forms aqueous biphasic and triphasic systems
Characterization of Chimeric Lipopolysaccharides from Escherichia coli Strain JM109 Transformed with Lipooligosaccharide Synthesis Genes (lsg) from Haemophilus influenzae
Previously, we reported the expression of chimeric lipopolysaccharides (LPS) in Escherichia coli strain JM109 (a K-12 strain) transformed with plasmids containing Haemophilus influenzae lipooligosaccharide synthesis genes (lsg) (Abu Kwaik, Y., McLaughlin, R. E., Apicella, M. A., and Spinola, S. M. (1991) Mol. Microbiol. 5, 2475–2480). In this current study, we have analyzed the O-deacylated LPS and free oligosaccharides from three transformants (designated pGEMLOS-4, pGEMLOS- 5, and pGEMLOS-7) by matrix-assisted laser desorption ionization, electrospray ionization, and tandem mass spectrometry techniques, along with composition and linkage analyses. These data show that the chimeric LPS consist of the complete E. coli LPS core structure glycosylated on the 7-position of the non-reducing terminal branch heptose with oligosaccharides from H. influenzae. In pGEMLOS-7, the disaccharide Gal13 3GlcNAc13 is added, and in pGEMLOS-5, the structure is extended to Gal134GlcNAc133Gal133GlcNAc13. PGEMLOS-5 LPS reacts positively with monoclonal antibody 3F11, an antibody that recognizes the terminal disaccharide of lacto-N-neotetraose. In pGEMLOS-4 LPS, the 3F11 epitope is apparently blocked by glycosylation on the 6-position of the terminal Gal with either Gal or GlcNAc. The biosynthesis of these chimeric LPS was found to be dependent on a functional wecA (formerly rfe) gene in E. coli. By using this carbohydrate expression system, we have been able to examine the functions of the lsg genes independent of the effects of other endogenous Haemophilus genes and expressed proteins
Loops versus lines and the compression stiffening of cells
Both animal and plant tissue exhibit a nonlinear rheological phenomenon known
as compression stiffening, or an increase in moduli with increasing uniaxial
compressive strain. Does such a phenomenon exist in single cells, which are the
building blocks of tissues? One expects an individual cell to compression
soften since the semiflexible biopolymer-based cytoskeletal network maintains
the mechanical integrity of the cell and in vitro semiflexible biopolymer
networks typically compression soften. To the contrary, we find that mouse
embryonic fibroblasts (mEFs) compression stiffen under uniaxial compression via
atomic force microscopy (AFM) studies. To understand this finding, we uncover
several potential mechanisms for compression stiffening. First, we study a
single semiflexible polymer loop modeling the actomyosin cortex enclosing a
viscous medium modeled as an incompressible fluid. Second, we study a
two-dimensional semiflexible polymer/fiber network interspersed with
area-conserving loops, which are a proxy for vesicles and fluid-based
organelles. Third, we study two-dimensional fiber networks with
angular-constraining crosslinks, i.e. semiflexible loops on the mesh scale. In
the latter two cases, the loops act as geometric constraints on the fiber
network to help stiffen it via increased angular interactions. We find that the
single semiflexible polymer loop model agrees well with our AFM experiments
until approximately 35% compressive strain. We also find for the fiber network
with area-conserving loops model that the stress-strain curves are sensitive to
the packing fraction and size distribution of the area-conserving loops,
thereby creating a mechanical fingerprint across different cell types. Finally,
we make comparisons between this model and experiments on fibrin networks
interlaced with beads as well as discuss the tissue-scale implications of
cellular compression stiffening.Comment: 19 pages, 17 figure
- …