791 research outputs found

    From quantum circuits to adiabatic algorithms

    Full text link
    This paper explores several aspects of the adiabatic quantum computation model. We first show a way that directly maps any arbitrary circuit in the standard quantum computing model to an adiabatic algorithm of the same depth. Specifically, we look for a smooth time-dependent Hamiltonian whose unique ground state slowly changes from the initial state of the circuit to its final state. Since this construction requires in general an n-local Hamiltonian, we will study whether approximation is possible using previous results on ground state entanglement and perturbation theory. Finally we will point out how the adiabatic model can be relaxed in various ways to allow for 2-local partially adiabatic algorithms as well as 2-local holonomic quantum algorithms.Comment: Version accepted by and to appear in Phys. Rev.

    Staying adiabatic with unknown energy gap

    Full text link
    We introduce an algorithm to perform an optimal adiabatic evolution that operates without an apriori knowledge of the system spectrum. By probing the system gap locally, the algorithm maximizes the evolution speed, thus minimizing the total evolution time. We test the algorithm on the Landau-Zener transition and then apply it on the quantum adiabatic computation of 3-SAT: The result is compatible with an exponential speed-up for up to twenty qubits with respect to classical algorithms. We finally study a possible algorithm improvement by combining it with the quantum Zeno effect.Comment: 4 pages, 4 figure

    Multipartite entanglement in quantum spin chains

    Full text link
    We study the occurrence of multipartite entanglement in spin chains. We show that certain genuine multipartite entangled states, namely W states, can be obtained as ground states of simple XX type ferromagnetic spin chains in a transverse magnetic field, for any number of sites. Moreover, multipartite entanglement is proven to exist even at finite temperatures. A transition from a product state to a multipartite entangled state occurs when decreasing the magnetic field to a critical value. Adiabatic passage through this point can thus lead to the generation of multipartite entanglement.Comment: 4 pages, 1 figur

    Geometric quantum computation using fictitious spin- 1/2 subspaces of strongly dipolar coupled nuclear spins

    Get PDF
    Geometric phases have been used in NMR, to implement controlled phase shift gates for quantum information processing, only in weakly coupled systems in which the individual spins can be identified as qubits. In this work, we implement controlled phase shift gates in strongly coupled systems, by using non-adiabatic geometric phases, obtained by evolving the magnetization of fictitious spin-1/2 subspaces, over a closed loop on the Bloch sphere. The dynamical phase accumulated during the evolution of the subspaces, is refocused by a spin echo pulse sequence and by setting the delay of transition selective pulses such that the evolution under the homonuclear coupling makes a complete 2π2\pi rotation. A detailed theoretical explanation of non-adiabatic geometric phases in NMR is given, by using single transition operators. Controlled phase shift gates, two qubit Deutsch-Jozsa algorithm and parity algorithm in a qubit-qutrit system have been implemented in various strongly dipolar coupled systems obtained by orienting the molecules in liquid crystal media.Comment: 37 pages, 17 figure

    Quantum Cryptography with Coherent States

    Get PDF
    The safety of a quantum key distribution system relies on the fact that any eavesdropping attempt on the quantum channel creates errors in the transmission. For a given error rate, the amount of information that may have leaked to the eavesdropper depends on both the particular system and the eavesdropping strategy. In this work, we discuss quantum cryptographic protocols based on the transmission of weak coherent states and present a new system, based on a symbiosis of two existing ones, and for which the information available to the eavesdropper is significantly reduced. This system is therefore safer than the two previous ones. We also suggest a possible experimental implementation.Comment: 20 pp. Revtex, Figures available from the authors upon request, To be published in PRA (March 95

    Temperature effects on mixed state geometric phase

    Full text link
    Geometric phase of an open quantum system that is interacting with a thermal environment (bath) is studied through some simple examples. The system is considered to be a simple spin-half particle which is weakly coupled to the bath. It is seen that even in this regime the geometric phase can vary with temperature. In addition, we also consider the system under an adiabatically time-varying magnetic field which is weakly coupled to the bath. An important feature of this model is that it reveals existence of a temperature-scale in which adiabaticity condition is preserved and beyond which the geometric phase is varying quite rapidly with temperature. This temperature is exactly the one in which the geometric phase vanishes. This analysis has some implications in realistic implementations of geometric quantum computation.Comment: 5 page

    Phase shifts in nonresonant coherent excitation

    Full text link
    Far-off-resonant pulsed laser fields produce negligible excitation between two atomic states but may induce considerable phase shifts. The acquired phases are usually calculated by using the adiabatic-elimination approximation. We analyze the accuracy of this approximation and derive the conditions for its applicability to the calculation of the phases. We account for various sources of imperfections, ranging from higher terms in the adiabatic-elimination expansion and irreversible population loss to couplings to additional states. We find that, as far as the phase shifts are concerned, the adiabatic elimination is accurate only for a very large detuning. We show that the adiabatic approximation is a far more accurate method for evaluating the phase shifts, with a vast domain of validity; the accuracy is further enhanced by superadiabatic corrections, which reduce the error well below 10410^{-4}. Moreover, owing to the effect of adiabatic population return, the adiabatic and superadiabatic approximations allow one to calculate the phase shifts even for a moderately large detuning, and even when the peak Rabi frequency is larger than the detuning; in these regimes the adiabatic elimination is completely inapplicable. We also derive several exact expressions for the phases using exactly soluble two-state and three-state analytical models.Comment: 10 pages, 7 figure

    Tailoring Single and Multiphoton Probabilities of a Single Photon On-Demand Source

    Full text link
    As typically implemented, single photon sources cannot be made to produce single photons with high probability, while simultaneously suppressing the probability of yielding two or more photons. Because of this, single photon sources cannot really produce single photons on demand. We describe a multiplexed system that allows the probabilities of producing one and more photons to be adjusted independently, enabling a much better approximation of a source of single photons on demand.Comment: 4 pages, LaTex, 2 figures, twocolumn and RevTex Style for PR

    Quantum State Disturbance vs. Information Gain: Uncertainty Relations for Quantum Information

    Full text link
    When an observer wants to identify a quantum state, which is known to be one of a given set of non-orthogonal states, the act of observation causes a disturbance to that state. We investigate the tradeoff between the information gain and that disturbance. This issue has important applications in quantum cryptography. The optimal detection method, for a given tolerated disturbance, is explicitly found in the case of two equiprobable non-orthogonal pure states.Comment: 20 pages, standard LaTeX, four png figures (also available from the authors: [email protected] and [email protected]

    Quantum identification system

    Full text link
    A secure quantum identification system combining a classical identification procedure and quantum key distribution is proposed. Each identification sequence is always used just once and new sequences are ``refuelled'' from a shared provably secret key transferred through the quantum channel. Two identification protocols are devised. The first protocol can be applied when legitimate users have an unjammable public channel at their disposal. The deception probability is derived for the case of a noisy quantum channel. The second protocol employs unconditionally secure authentication of information sent over the public channel, and thus it can be applied even in the case when an adversary is allowed to modify public communications. An experimental realization of a quantum identification system is described.Comment: RevTeX, 4 postscript figures, 9 pages, submitted to Physical Review
    corecore