203 research outputs found

    The collective quantization of three-flavored Skyrmions revisited

    Full text link
    A self-consistent large NcN_c approach is developed for the collective quantization of SU(3) flavor hedgehog solitons, such as the Skyrmion. The key to this analysis is the determination of all of the zero modes associated with small fluctuations around the hedgehog. These are used in the conventional way to construct collective coordinates. This approach differs from previous work in that it does not implicitly assume that each static zero mode is associated with a dynamical zero mode. It is demonstrated explicitly in the context of the Skyrmion that there are fewer dynamical zero modes than static ones due to the Witten-Wess-Zumino term in the action. Group-theoretic methods are employed to identify the physical states resulting from canonical quantization of the collectively rotating soliton. The collective states fall into representations of SU(3) flavor labeled by (p,q)(p,q) and are given by (2J,Nc2−J)(2J, \frac{Nc}{2} -J) where J=1/2,3/2,...J={1/2},{3/2},... is the spin of the collective state. States with strangeness S>0S > 0 do not arise as collective states from this procedure; thus the θ+\theta^{+} (pentaquark) resonance does not arise as a collective excitation in models of this type.Comment: 12 pages; uses package "youngtab

    Unique Identification of Lee-Wick Gauge Bosons at Linear Colliders

    Get PDF
    Grinstein, O'Connell and Wise have recently presented an extension of the Standard Model (SM), based on the ideas of Lee and Wick (LW), which demonstrates an interesting way to remove the quadratically divergent contributions to the Higgs mass induced by radiative corrections. This model predicts the existence of negative-norm copies of the usual SM fields at the TeV scale with ghost-like propagators and negative decay widths, but with otherwise SM-like couplings. In earlier work, it was demonstrated that the LW states in the gauge boson sector of these models, though easy to observe, cannot be uniquely identified as such at the LHC. In this paper, we address the issue of whether or not this problem can be resolved at an e+e−e^+e^- collider with a suitable center of mass energy range. We find that measurements of the cross section and the left-right polarization asymmetry associated with Bhabha scattering can lead to a unique identification of the neutral electroweak gauge bosons of the Lee-Wick type.Comment: 16 pages, 6 figures; discussion and references adde

    Asymmetric WIMP dark matter

    Full text link
    In existing dark matter models with global symmetries the relic abundance of dark matter is either equal to that of anti-dark matter (thermal WIMP), or vastly larger, with essentially no remaining anti-dark matter (asymmetric dark matter). By exploring the consequences of a primordial asymmetry on the coupled dark matter and anti-dark matter Boltzmann equations we find large regions of parameter space that interpolate between these two extremes. Interestingly, this new asymmetric WIMP framework can accommodate a wide range of dark matter masses and annihilation cross sections. The present-day dark matter population is typically asymmetric, but only weakly so, such that indirect signals of dark matter annihilation are not completely suppressed. We apply our results to existing models, noting that upcoming direct detection experiments will constrain a large region of the relevant parameter space.Comment: 32 pages, 6 figures, updated references, updated XENON100 bounds, typo in figure caption correcte

    Supersymmetric Decays of the Z' Boson

    Full text link
    The decay of the Z' boson into supersymmetric particles is studied. We investigate how these supersymmetric modes affect the current limits from the Tevatron and project the expected sensitivities at the LHC. Employing three representative supersymmetric Z' models, namely, E_6, U(1)_{B-L}, and the sequential model, we show that the current limits of the Z' mass from the Tevatron could be reduced substantially due to the weakening of the branching ratio into leptonic pairs. The mass reach for the E_6 Z' bosons is about 1.3-1.5 TeV at the LHC-7 (1 fb^{-1}), about 2.5 - 2.6 TeV at the LHC-10 (10 fb^{-1}), and about 4.2 - 4.3 TeV at the LHC-14 (100 fb^{-1}). A similar mass reach for the U(1)_{B-L} Z' is also obtained. We also examine the potential of identifying various supersymmetric decay modes of the Z' boson because it may play a crucial role in the detailed dynamics of supersymmetry breaking.Comment: 30 pages, including 13 figures. improvements to the presentation and references adde

    Noether Symmetry Approach in "Cosmic Triad" Vector Field Scenario

    Full text link
    To realize the accelerations in the early and late periods of our universe, we need to specify potentials for the dominant fields. In this paper, by using the Noether symmetry approach, we try to find suitable potentials in the "cosmic triad" vector field scenario. Because the equation of state parameter of dark energy has been constrained in the range of −1.21≤ω≤−0.89-1.21\leq \omega\leq -0.89 by observations, we derive the Noether conditions for the vector field in quintessence, phantom and quintom models, respectively. In the first two cases, constant potential solutions have been obtained. What is more, a fast decaying point-like solution with power-law potential is also found for the vector field in quintessence model. For the quintom case, we find an interesting constraint C~Vp′=−CVq′\tilde{C}V_{p}'=-CV_{q}' on the field potentials, where CC and C~\tilde{C} are constants related to the Noether symmetry.Comment: 15 pages, no figures, accepted by Classical and Quantum Gravity

    Two loop electroweak corrections to Bˉ→Xsγ\bar B\rightarrow X_s\gamma and Bs0→μ+μ−B_s^0\rightarrow \mu^+\mu^- in the B-LSSM

    Full text link
    The rare decays Bˉ→Xsγ\bar B\rightarrow X_s\gamma and Bs0→μ+μ−B_s^0\rightarrow \mu^+\mu^- are important to research new physics beyond standard model. In this work, we investigate two loop electroweak corrections to Bˉ→Xsγ\bar B\rightarrow X_s\gamma and Bs0→μ+μ−B_s^0\rightarrow \mu^+\mu^- in the minimal supersymmetric extension of the SM with local B−LB-L gauge symmetry (B-LSSM), under a minimal flavor violating assumption for the soft breaking terms. In this framework, new particles and new definition of squarks can affect the theoretical predictions of these two processes, with respect to the MSSM. Considering the constraints from updated experimental data, the numerical results show that the B-LSSM can fit the experimental data for the branching ratios of Bˉ→Xsγ\bar B\rightarrow X_s\gamma and Bs0→μ+μ−B_s^0\rightarrow \mu^+\mu^-. The results of the rare decays also further constrain the parameter space of the B-LSSM.Comment: 33 pages, 9 figures, Published in EPJ

    Chiral U(1) flavor models and flavored Higgs doublets: the top FB asymmetry and the Wjj

    Full text link
    We present U(1) flavor models for leptophobic Z' with flavor dependent couplings to the right-handed up-type quarks in the Standard Model, which can accommodate the recent data on the top forward-backward (FB) asymmetry and the dijet resonance associated with a W boson reported by CDF Collaboration. Such flavor-dependent leptophobic charge assignments generally require extra chiral fermions for anomaly cancellation. Also the chiral nature of U(1)' flavor symmetry calls for new U(1)'-charged Higgs doublets in order for the SM fermions to have realistic renormalizable Yukawa couplings. The stringent constraints from the top FB asymmetry at the Tevatron and the same sign top pair production at the LHC can be evaded due to contributions of the extra Higgs doublets. We also show that the extension could realize cold dark matter candidates.Comment: 40 pages, 10 figures, added 1 figure and extended discussion, accepted for publication in JHE

    Einstein-aether as a quantum effective field theory

    Full text link
    The possibility that Lorentz symmetry is violated in gravitational processes is relatively unconstrained by experiment, in stark contrast with the level of accuracy to which Lorentz symmetry has been confirmed in the matter sector. One model of Lorentz violation in the gravitational sector is Einstein-aether theory, in which Lorentz symmetry is broken by giving a vacuum expectation value to a dynamical vector field. In this paper we analyse the effective theory for quantised gravitational and aether perturbations. We show that this theory possesses a controlled effective expansion within dimensional regularisation, that is, for any process there are a finite number of Feynman diagrams which will contribute to a given order of accuracy. We find that there is no log-running of the two-derivative phenomenological parameters, justifying the use of experimental constraints for these parameters obtained over many orders of magnitude in energy scale. Given the stringent experimental bounds on two-derivative Lorentz-violating operators, we estimate the size of matter Lorentz-violation which arises due to loop effects. This amounts to an estimation of the natural size of coefficients for Lorentz-violating dimension-six matter operators, which in turn can be used to obtain a new bound on the two-derivative parameters of this theory.Comment: 21 page

    What the Tevatron Found?

    Full text link
    The CDF collaboration has reported a 4.1\sigma\ excess in their lepton, missing energy, and dijets channel. This excess, which takes the form of an approximately Gaussian peak centered at a dijet invariant mass of 147 GeV, has provoked a great deal of experimental and theoretical interest. Although the D\O\ collaboration has reported that they do not observe a signal consistent with CDF, there is currently no widely accepted explanation for the discrepancy between these two experiments. A resolution of this issue is of great importance---not least because it may teach us lessons relevant for future searches at the LHC---and it will clearly require additional information. In this paper, we consider the ability of the Tevatron and LHC detectors to observe evidence associated with the CDF excess in a variety of channels. We also discuss the ability of selected kinematic distributions to distinguish between Standard Model explanations of the observed excess and various new physics scenarios.Comment: 14 pages, 4 figures, 2 tables. Accepted for publication by JHEP. v2: minor changes to text and figure

    The other Higgses, at resonance, in the Lee-Wick extension of the Standard Model

    Get PDF
    Within the framework of the Lee Wick Standard Model (LWSM) we investigate Higgs pair production gg→h0h0gg \to h_0 h_0, gg→h0p~0gg \to h_0 \tilde p_0 and top pair production gg→tˉtgg \to \bar tt at the Large Hadron Collider (LHC), where the neutral particles from the Higgs sector (h0h_0, h~0\tilde h_0 and p~0\tilde p_0) appear as possible resonant intermediate states. We investigate the signal gg→h0h0→bˉbγγgg \to h_0 h_0 \to \bar b b \gamma \gamma and we find that the LW Higgs, depending on its mass-range, can be seen not long after the LHC upgrade in 2012. More precisely this happens when the new LW Higgs states are below the top pair threshold. In gg→tˉtgg \to \bar tt the LW states, due to the wrong-sign propagator and negative width, lead to a dip-peak structure instead of the usual peak-dip structure which gives a characteristic signal especially for low-lying LW Higgs states. We comment on the LWSM and the forward-backward asymmetry in view of the measurement at the TeVatron. Furthermore, we present a technique which reduces the hyperbolic diagonalization to standard diagonalization methods. We clarify issues of spurious phases in the Yukawa sector.Comment: 36 pages, 16 figures, 3 table
    • …
    corecore