7 research outputs found

    Dynamics and Mechanical Stability of the Developing Dorsoventral Organizer of the Wing Imaginal Disc

    Get PDF
    Shaping the primordia during development relies on forces and mechanisms able to control cell segregation. In the imaginal discs of Drosophila the cellular populations that will give rise to the dorsal and ventral parts on the wing blade are segregated and do not intermingle. A cellular population that becomes specified by the boundary of the dorsal and ventral cellular domains, the so-called organizer, controls this process. In this paper we study the dynamics and stability of the dorsal-ventral organizer of the wing imaginal disc of Drosophila as cell proliferation advances. Our approach is based on a vertex model to perform in silico experiments that are fully dynamical and take into account the available experimental data such as: cell packing properties, orientation of the cellular divisions, response upon membrane ablation, and robustness to mechanical perturbations induced by fast growing clones. Our results shed light on the complex interplay between the cytoskeleton mechanics, the cell cycle, the cell growth, and the cellular interactions in order to shape the dorsal-ventral organizer as a robust source of positional information and a lineage controller. Specifically, we elucidate the necessary and sufficient ingredients that enforce its functionality: distinctive mechanical properties, including increased tension, longer cell cycle duration, and a cleavage criterion that satisfies the Hertwig rule. Our results provide novel insights into the developmental mechanisms that drive the dynamics of the DV organizer and set a definition of the so-called Notch fence model in quantitative terms

    Characteristic of the active substance of the Saccharomyces cerevisiae preparation having radioprotective properties

    Get PDF
    The paper describes some biological features of the radioprotective effect of double-stranded RNA preparation. It was found that yeast RNA preparation has a prolonged radioprotective effect after irradiation by a lethal dose of 9.4 Gy. 100 % of animals survive on the 70th day of observation when irradiated 1 hour or 4 days after 7 mg RNA preparation injection, 60 % animals survive when irradiated on day 8 or 12. Time parameters of repair of double-stranded breaks induced by gamma rays were estimated. It was found that the injection of the RNA preparation at the time of maximum number of double-stranded breaks, 1 hour after irradiation, reduces the efficacy of radioprotective action compared with the injection 1 hour before irradiation and 4 hours after irradiation. A comparison of the radioprotective effect of the standard radioprotector B-190 and the RNA preparation was made in one experiment. It has been established that the total RNA preparation is more efficacious than B-190. Survival on the 40th day after irradiation was 78 % for the group of mice treated with the RNA preparation and 67 % for those treated with B-190. In the course of analytical studies of the total yeast RNA preparation, it was found that the preparation is a mixture of single-stranded and double-stranded RNA. It was shown that only double-stranded RNA has radioprotective properties. Injection of 160 μg double-stranded RNA protects 100 % of the experimental animals from an absolutely lethal dose of gamma radiation, 9.4 Gy. It was established that the radioprotective effect of double-stranded RNA does not depend on sequence, but depends on its double-stranded form and the presence of “open” ends of the molecule. It is supposed that the radioprotective effect of double-stranded RNA is associated with the participation of RNA molecules in the correct repair of radiation-damaged chromatin in blood stem cells. The hematopoietic pluripotent cells that have survived migrate to the periphery, reach the spleen and actively proliferate. The newly formed cell population restores the hematopoietic and immune systems, which determines the survival of lethally irradiated animals

    Development of the therapeutic regimen based on the synergistic activity of cyclophosphamide and double-stranded DNA preparation which results in complete cure of mice engrafted with Krebs-2 ascites

    Get PDF
    Cumulative evidence obtained in this series of studies has guided the logic behind the development of a novel composite dsDNA-based preparation whose therapeutic application according to the specific regimen completely cures the mice engrafted with otherwise lethal Krebs-2 ascites. The likely mechanism involves elimination of TAMRA+ tumor-inducing stem cells (TISCs) from Krebs-2 tumors. We performed quantitative analysis of TISC dynamics in Krebs-2  ascites following treatment with the cytostatic drug cyclophosphamide (CP) and untreated control cells. In intact ascites, TISC percentage oscillates around a certain value. Following CP treatment and massive apoptosis of committed cancer cell subpopulation, we observed relative increase in TISC percentage, which is consistent with reduced susceptibility of TISCs to CP. Nonetheless, this treatment apparently synchronizes TISCs in a cell cycle phase when they become sensitive to further drug treatments. We describe the regimen of synergistic DNA + CP activity against Krebs-2 ascites. This protocol results in a complete cure of 50 % of Krebs-2 engrafted mice and involves three metronomic injections of CP exactly at the timepoints when repair cycles are about to finish combined with dsDNA injections 18 hours following each CP injection. The “final shot” uses CP + DNA treatment, which targets the surviving yet highly synchronized and therefore treatmentsensitive cells. The first three CP/DNA injections appear to arrest Krebs-2 cells in late S-G2-M phase and result in their simultaneous progression into G1-S phase. The timing of the “final shot” is crucial for the successful treatment, which eradicates tumorigenic cell subpopulation from Krebs-2 ascites. Additionally, we quantified the changes in several biochemical, cellular and morphopathological parameters in mice throughout different treatment stages

    The British Devonian Crinoidea Part 1, Introduction and Camerata

    No full text
    corecore