7 research outputs found

    Meteorological and oceanographic conditions in the northern Adriatic Sea during the period June 1999–July 2002: Influence on the mucilage phenomenon

    No full text
    Mucilage events (formation of very large organic aggregates and gelatinous surface layers) have been documented several times during the past two centuries in the northern Adriatic Sea (NA), while their frequency has significantly increased since 1988. In this work, meteorological and oceanographic conditions in the NA during the period June 1999–July 2002 are described and their relation to the outbreak and fate of the mucilage phenomenon was investigated. Salinity and temperature data were collected during approximately monthly cruises along three transects in the NA. Relevant meteorological situations (air temperature, rainfall, wind) were selected from large-scale ECMWF analyses and from the Local Analysis and Prediction System (LAPS; Emilia Romagna Meteorological Service), while sea conditions (waves) were analysed by means of the Wave Adriatic Model (WAM). Data for air temperature, rainfall, and wind from several meteorological stations in the region were used. Average seasonal cycles of sea temperature and salinity simulated with statistical models, based on historical data collected in the NA since 1972, were used to determine thermal and haline anomalies. The monthly anomaly variability of maximum and minimum air temperatures, rainfall amount and number of rainy days did not appear to be relevant for the mucilage phenomenon outbreak. In contrast, both vertical and horizontal thermohaline gradients in the region were more developed during late spring and summer of 2000 and particularly of 2002, when the mucilage events were of greatest extent in space and time, compared to 2001 (short-lived event) and 1999 (no event). These more pronounced gradients were due to a combination of several unusual conditions: sharp heating of the sea surface in May–June, domination of eastwards transport of freshened waters formed in the Po Delta area, and intrusion of very high salinity intermediate waters originating in the eastern Mediterranean. Moreover, in winter of both 2000 and 2002 very dense and cold water formed and remained in the bottom layer until spring, contributing to increase the stratification degree of the water column. The duration of the mucilage events and their spatial distribution in the region depend strongly on meteorological changes. Recurrent anticyclonic conditions, characterized by low wind and calm sea, favour extended events in time (up 2 months in 2002). In contrast, highly perturbed weather, particularly due to strong “bora” wind, can be determined in sharp decay of the event (e.g. in July 2000)

    Linking 1D coastal ocean modelling to environmental management: an ensemble approach

    Get PDF
    The use of a one-dimensional interdisciplinary numerical model of the coastal ocean as a tool contributing to the formulation of ecosystem-based management (EBM) is explored. The focus is on the definition of an experimental design based on ensemble simulations, integrating variability linked to scenarios (characterised by changes in the system forcing) and to the concurrent variation of selected, and poorly constrained, model parameters. The modelling system used was previously specifically designed for the use in "data-rich" areas, so that horizontal dynamics can be resolved by a diagnostic approach and external inputs can be parameterised by nudging schemes properly calibrated. Ensembles determined by changes in the simulated environmental (physical and biogeochemical) dynamics, under joint forcing and parameterisation variations, highlight the uncertainties associated to the application of specific scenarios that are relevant to EBM, providing an assessment of the reliability of the predicted changes. The work has been carried out by implementing the coupled modelling system BFM-POM1D in an area of Gulf of Trieste (northern Adriatic Sea), considered homogeneous from the point of view of hydrological properties, and forcing it by changing climatic (warming) and anthropogenic (reduction of the land-based nutrient input) pressure. Model parameters affected by considerable uncertainties (due to the lack of relevant observations) were varied jointly with the scenarios of change. The resulting large set of ensemble simulations provided a general estimation of the model uncertainties related to the joint variation of pressures and model parameters. The information of the model result variability aimed at conveying efficiently and comprehensibly the information on the uncertainties/reliability of the model results to non-technical EBM planners and stakeholders, in order to have the model-based information effectively contributing to EBM
    corecore