2,435 research outputs found
Sheet metal forming optimization methodology for servo press process control improvement
In sheet metal forming manufacturing operations the use of servo presses is gaining more interest due to the opportunity to improve process performance (quality, productivity, cost reduction, etc.). It is not yet clear how to proceed in the engineering process when this type of operating machine is used to achieve the maximum possible potential of this technology. Recently, several press builders have developed gap‐ and straight‐sided metal forming presses adopting the mechanical servo‐drive technology. The mechanical servo‐drive press offers the flexibility of a hydraulic press with the speed, accuracy and reliability of a mechanical press. Servo drive presses give the opportunity to improve the productivity of process conditions and improve the quality of stamped parts. Forming simulation and numerical optimization can be useful tools to define beforehand the optimal process parameter set‐up in terms of servo press downward curve properties. This is done by carrying out a sensitivity analysis of the forming parameters having influence on said curve. The authors have developed a numerical methodology able to analyze the influence factors, for comparison with the degrees of freedom made available by the usage of a servo press, in terms of stroke profile management, to obtain an optimized process parameters combination
Optimization of Machining Fixture for Aeronautical Thin-walled Components☆
Abstract The aim of this work has been the optimization of the fixtures performance used in thin-walled workpiece machining depending on the local rigidity characteristics of the component to be machined. An extensive topology optimization activity has been performed both on fixture-workpiece systems modelled with shell elements and on fixture-workpiece systems modelled with solid elements, varying the topology design variables and/or optimization constraints for each optimization problem, in order to provide a new design of fixture. Finally, a new blended Solid-Lattice design of the fixture, starting by the design topologically optimized, has been created. In this way, it has been possible to identify void regions in the design space, where the material can be removed, regions where solid material is needed, and regions where lattice structure is required. This has allowed to generate the optimal hybrid or blended solid-lattice design based on desired functionality of the part having as natural consequence the definition of a new method for fixtures design
Protonography, a new technique for the analysis of carbonic anhydrase activity.
All proteolytic enzymes, which are able to renature and reacquire the proteolytic activity on a copolymerized substrate, can be analyzed by zymography upon removal of sodium dodecyl sulfate (SDS). Protonography, the new technique described in this study, unlike zymography, allows the detection of a different protein, not a protease, i.e. of the carbonic anhydrase (CA, EC 4.2.1.1) activity on a SDS polyacrylamide gel electrophoresis gel. CAs are zinc-containing enzymes that catalyze the reversible conversion of carbon dioxide to bicarbonate and protons. Hydrogen ions produced during the catalyzed reaction are responsible for the change of color that appears on the gel around the CA band. For this reason, we named the new technique "protonography". The following four salient features characterize this new technique: (a) on the basis of molecular weight markers, recombinant or native CAs with different molecular weights can be detected and quantified rapidly on a single gel; (b) the hydratase activity can be reversibly inhibited by SDS during electrophoresis and recovered by incubating the gel in aqueous Triton X-100; (c) it is possible to separate active oligomeric forms of CAs on the gel enabling their activities to be determined independently of one another. This feature is not possible when using solution assays; and (d) it can be a useful tool to establish if a putative or a newly identified CA in a genome is expressed and enzymatically active. This article outlines the general principles employed in protonography, providing an easy procedure to implement it in laboratories working with CAs. It also presents an overview of its development and current research applications through specific examples
A device to characterize optical fibres
ATLAS is a general purpose experiment approved for the LHC collider at CERN.
An important component of the detector is the central hadronic calorimeter; for
its construction more than 600,000 Wave Length Shifting (WLS) fibres
(corresponding to a total length of 1,120 Km) have been used.
We have built and put into operation a dedicated instrument for the
measurement of light yield and attenuation length over groups of 20 fibres at a
time.
The overall accuracy achieved in the measurement of light yield
(attenuation length) is 1.5% (3%).
We also report the results obtained using this method in the quality control
of a large sample of fibres.Comment: 17 pages 20 figeres submitted to NIM journa
Cloning, expression and purification of the complete domain of the η-carbonic anhydrase from Plasmodium falciparum.
The antimalarial drugs are of fundamental importance in the control of malaria, especially for the lack of efficient treatments and acquired resistance to the existing drugs. For this reason, there is a continuous work in identifying novel, less toxic and effective chemotherapies as well as new therapeutic targets against the causative agents of malaria. In this context, a superfamily of metalloenzymes named carbonic anhydrases (CAs, EC 4.2.1.1) has aroused a great interest as druggable enzymes to limit the development of Plasmodium falciparum gametocytes. CAs catalyze a common reaction in all life domains, the carbon dioxide hydration to bicarbonate and protons (CO2 + H2O HCO3- + H+). P. falciparum synthesizes pyrimidines de novo starting from HCO3-, which is generated from CO2 through the action of the ?-CA identified in the genome of the protozoan. Here, we propose a procedure for the preparation of a wider portion of the protozoan ?-CA, named PfCAdom (358 amino acid residues), with respect to the truncated form prepared by Krungkrai et al. (PfCA1, 235 amino acid residues). The results evidenced that the recombinant PfCAdom, produced as a His-tag fusion protein, was 2.7 times more active with respect the truncated form PfCA1
Occurrence of polychlorobiphenyls in buffalo mozzarella cheese from Campania (Italy)
Buffalo milk and mozzarella cheese produced in the Caserta and Salerno areas in Campania region have been investigated on the presence and the levels of polychlorobiphenyls (PCBs). Seven congeners, six non dioxin-like (NDL-PCBs nos. 28, 52, 101, 138, 153 and 180) and one dioxin-like (DL-PCB n. 118), were detected. PCBs were found at detectable levels in the 83% of the buffalo milk and in the 100% of the mozzarella cheese samples from Caserta; in those from Salerno the prevalence of contamination was 77% for milk and 73% for mozzarellas, respectively. The NDL-PCB content of mozzarellas collected in Caserta was significantly higher than that found in those from Salerno. The more diffuse congeners were PCB 28, 138 and 153 both in milk and in mozzarella cheese; PCB 118 contributed to the total PCB content for the 7% in milk and 2-3% in mozzarella cheese. On the basis of the Italian annual average consumption the contribution of mozzarella to the daily dietary intake of NDL-PCB can vary between 0.41 and 21.33 ng kg-1 bw, median value of 3.66 ng kg-1 bw. The levels of contamination in milk and dairies analyzed are similar or quite lower than those found in other European countries
Replica symmetric evaluation of the information transfer in a two-layer network in presence of continuous+discrete stimuli
In a previous report we have evaluated analytically the mutual information
between the firing rates of N independent units and a set of multi-dimensional
continuous+discrete stimuli, for a finite population size and in the limit of
large noise. Here, we extend the analysis to the case of two interconnected
populations, where input units activate output ones via gaussian weights and a
threshold linear transfer function. We evaluate the information carried by a
population of M output units, again about continuous+discrete correlates. The
mutual information is evaluated solving saddle point equations under the
assumption of replica symmetry, a method which, by taking into account only the
term linear in N of the input information, is equivalent to assuming the noise
to be large. Within this limitation, we analyze the dependence of the
information on the ratio M/N, on the selectivity of the input units and on the
level of the output noise. We show analytically, and confirm numerically, that
in the limit of a linear transfer function and of a small ratio between output
and input noise, the output information approaches asymptotically the
information carried in input. Finally, we show that the information loss in
output does not depend much on the structure of the stimulus, whether purely
continuous, purely discrete or mixed, but only on the position of the threshold
nonlinearity, and on the ratio between input and output noise.Comment: 19 pages, 4 figure
Activation studies of the β-carbonic anhydrases from Escherichia coli with amino acids and amines
A β-carbonic anhydrase (CA, EC 4.2.1.1) from the widespread bacterium Escherichia coli (EcoCAβ), encoded by the CynT2 gene, has been investigated for its catalytic properties and enzymatic activation by a panel of amino acids and amines. EcoCAβ showed a significant catalytic activity for the hydration of CO2 to bicarbonate and a proton, with a kinetic constant kcat of 5.3 × 105 s− and a Michaelis–Menten constant KM of 12.9 mM. The most effective EcoCAβ activators were L- and D-DOPA, L-Tyr, 4-amino-Phe, serotonin and L-adrenaline, with KAs from 2.76 to 10.7 µM. L-His, 2-pyridyl-methylamine, L-Asn and L-Gln were relatively weak activators (KAs from 36.0 to 49.5 µM). D-His, L- and D-Phe, L- and D-Trp, D-Tyr, histamine, dopamine, 2-(aminoethyl)pyridine/piperazine/morpholine, L-Asp, L- and D-Glu have KAs from 11.3 to 23.7 µM. Endogenous CA activators may play a role in bacterial virulence and colonisation of the host
Synthesis, computational studies and assessment of in vitro inhibitory activity of umbelliferon-based compounds against tumour-associated carbonic anhydrase isoforms IX and XII
Coumarins are widely diffused secondary metabolites possessing a plethora of biological activities. It has been established that coumarins represent a peculiar class of human carbonic anhydrase (hCA) inhibitors having a distinct mechanism of action involving a non-classical binding with amino acid residues paving the entrance of hCA catalytic site. Herein, we report the synthesis of a small series of new coumarin derivatives 7-11, 15, 17 prepared via classical Pechmann condensation starting from resorcinol derivatives and suitable β-ketoesters. The evaluation of inhibitory activity revealed that these compounds possessed nanomolar affinity and high selectivity towards tumour-associated hCA IX and XII over cytosolic hCA I and hCA II isoforms. To investigate the binding mode of these new coumarin-inspired inhibitors, the most active compounds 10 and 17 were docked within hCA XII catalytic cleft
- …